
Evaluation of Rust for Operating
System Development and Porting Key

Components of the HermitCore Unikernel

Evaluierung von Rust zur Betriebssystementwicklung und
Portierung von Schlüsselkomponenten des Unikernels HermitCore

Colin Finck
Matriculation Number: 314570

Master Thesis

The present work was submitted to
RWTH Aachen University

Faculty of Electrical Engineering and Information Technology
Institute for Automation of Complex Power Systems

Univ.-Prof. Antonello Monti, Ph. D.

Supervisor: Dr. rer. nat. Stefan Lankes

Eidesstattliche Versicherung
Ich, Colin Finck (Matrikelnummer 314570), versichere hiermit an Eides Statt, dass
ich die vorliegende Masterarbeit mit dem Titel

Evaluierung von Rust zur Betriebssystementwicklung und Portierung von
Schlüsselkomponenten des Unikernels HermitCore

selbstständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass
die Arbeit zusätzlich auf einem Datenträger eingereicht wird, erkläre ich, dass die
schriftliche und die elektronische Form vollständig übereinstimmen. Die Arbeit hat
in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Ort, Datum Unterschrift

Belehrung
§156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche
Versicherung falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird
mit einer Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe bestraft.

§161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen
worden ist, so tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vor-
schriften des §158 Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:

Ort, Datum Unterschrift

Kurzfassung
Diese Arbeit bewertet die Tauglichkeit der neuartigen und auf Sicherheit und Neben-
läufigkeit ausgelegten Programmiersprache Rust für die Entwicklung von Betriebs-
systemen. Dazu wird das in C geschriebene Library-Betriebssystem HermitCore
nach Rust portiert. Eigenschaften von HermitCore und Funktionen von Rust werden
im Detail erläutert. Schlüsselkomponenten wie die Speicherverwaltung, Hardware-
Initialisierung und der Task-Scheduler werden neu geschrieben, um das System-
Design zu verbessern und die Vorteile von Rust auszunutzen. Zudem werden generi-
sche Implementierungen von Datenstrukturen entwickelt, die aktuell nicht von Rust
bereitgestellt werden und für eine Vielzahl von Anwendungsfällen einsetzbar sind.
Das entstandene Betriebssystem wird auf mehreren Test-Rechnern verifiziert und
mit der C-Version verglichen. Benchmarks zeigen, dass die Rust-Implementierung
teilweise schneller als das Original ist und es wird argumentiert, dass die Rust-
Version ebenfalls weniger anfällig für Programmierfehler ist. Die Arbeit endet mit
einem Fazit und Ideen für zukünftige Verbesserungen von HermitCore und Rust.

Stichwörter: HermitCore, Rust, Unikernel, Multi-Kernel, Betriebssysteme

v

Abstract
This thesis evaluates the novel programming language Rust, which is tailored to-
wards safety and concurrency, for operating system development. This is accom-
plished by porting the library operating system HermitCore written in C to Rust.
Characteristics of HermitCore and features of Rust are presented in-depth. Key
components like the Memory Manager, hardware initialization, and task scheduler
are rewritten to improve the operating system design and leverage the advantages of
Rust. Moreover, generic implementations of data structures are provided, which are
currently unavailable in Rust and usable for a variety of applications. The resulting
operating system is verified on multiple test systems and compared to the C version.
Benchmarks prove that the Rust implementation is partially faster than the original
and it is argued that the Rust version is also less prone to programming mistakes.
The thesis ends with a conclusion and ideas for further improvements on HermitCore
and Rust.

Keywords: HermitCore, Rust, Unikernel, Multi-Kernel, Operating Systems

vii

Contents
1 Introduction 1

2 Basics 3
2.1 The HermitCore Operating System 3

2.1.1 Architecture Support . 4
2.1.2 Memory Manager . 6
2.1.3 Scheduler . 10
2.1.4 Timers . 11
2.1.5 Network Support . 12
2.1.6 Third-Party Components . 12

2.2 The Rust Programming Language . 13
2.2.1 The Rust Toolchain . 14
2.2.2 Basic Safety Features . 15
2.2.3 Expressions and Statements 16
2.2.4 Arrays, Slices, and Strings . 17
2.2.5 Generic Programming . 17
2.2.6 Pattern Matching . 19
2.2.7 Ownership, References, and Borrowing 20
2.2.8 Foreign Function Interfaces 22
2.2.9 Crates for Operating System Development 24

3 Implementation 27
3.1 Goals . 27
3.2 Console Output . 28
3.3 Build System . 29
3.4 Memory Manager . 29

3.4.1 Paging . 29
3.4.2 Physical and Virtual Memory Management 32
3.4.3 Heap Allocator . 36
3.4.4 Node Pool . 37

3.5 Hardware Initialization . 38
3.5.1 Processor Initialization . 39
3.5.2 Global Descriptor Table . 40
3.5.3 Interrupts and Exceptions . 40
3.5.4 Processor Frequency Detection 42
3.5.5 APIC and SMP . 43
3.5.6 Boot Process Diagram . 46

ix

Contents

3.6 Per-Processor Variables . 46
3.7 Scheduler . 49
3.8 Features Not Covered . 51

4 Evaluation 53
4.1 Test Systems . 53
4.2 Hardware Compatibility . 54
4.3 Benchmarks . 55

4.3.1 Basic Micro-Benchmarks . 56
4.3.2 Hourglass Benchmark . 57

4.4 Memory and Storage Usage . 58
4.5 Code Maintainability . 58
4.6 The Rust Toolchain . 60

5 Conclusion 63

A Source Code 67
A.1 Universal APIC Register Access . 67

B Sample Console Log 69

List of Figures 71

List of Tables 73

List of Listings 75

List of Abbreviations 77

Bibliography 79

x

1 Introduction

HermitCore1 is a novel operating system kernel developed at the Institute for Au-
tomation of Complex Power Systems (ACS) since 2015. It is tailored for low system
noise and predictable runtime behavior to facilitate High-Performance Computing
(HPC) applications scaled across thousands of nodes [1]. Reducing system noise
has become increasingly important in Symmetric Multiprocessing (SMP) systems
as jobs are parallelized among more and more processors. Due to the burden of syn-
chronization in parallel systems, noise on a single processor can delay the execution
of other processors and have a huge negative impact on the overall performance [2].

To fulfill these goals, HermitCore has been designed as a single-address-space
library operating system, also called Unikernel [3]. Application code is compiled
together with the operating system code into a single lightweight binary, which can
run directly on hardware or inside a virtual machine. Additionally, HermitCore
can also work as a Multi-Kernel side by side to Linux. This enables running the
performance-critical part of an application inside HermitCore while Linux provides
a fully-weight kernel for pre- and post-processing. By providing support for the
entire GNU Compiler Collection (GCC) and common programming models such as
OpenMP, existing HPC applications can easily be built for HermitCore.

Rust2 is a programming language invented by Graydon Hoare and sponsored by
Mozilla Research since 2009 [4]. As a compiled systems language with deterministic
memory management, it competes directly with C and C++, but puts a special
emphasis on safety and concurrency [5]. Examples for such features include bounds-
checked indexing, variables being private and immutable by default, guaranteed
validity of memory references, and ensuring that only one mutable reference to a
variable exists at the same time. These rules are checked at compile time, so they
do not incur runtime costs and it is impossible to violate them accidentally. By
employing these techniques, Rust tries to eliminate the most common programming
mistakes such as buffer overflows, accessing invalid pointers, and data races in
multithreaded code [6]. They rank among the top software security issues [7].

Rust originated out of dissatisfaction with C++ [8]. As such, it partly resembles
its syntax and supports concepts like Generic Programming, Resource Acquisition
Is Initialization (RAII), and Smart Pointers. However, it has also taken influences
from newer languages, e.g. Haskell’s Typeclasses or OCaml’s Pattern Matching [9].

1http://www.hermitcore.org
2https://www.rust-lang.org

1

1 Introduction

Within the scope of this thesis, the suitability of the Rust language and toolchain
for writing entire operating systems for HPC applications is evaluated. This is
done by rewriting the existing C code of HermitCore key components in Rust and
integrating them into the library operating system. Whenever Rust offers a safer or
more elegant way of implementing a feature, it is preferred over a direct translation
of the C code. However, a focus also lies on maintaining compatibility to existing
HermitCore applications, in particular the system call interface.

In the following chapter, the HermitCore operating system and Rust programming
language are introduced in depth. Chapter 3 details the implementation of all ported
key components and the integration into the existing build system and codebase. By
the end of that chapter, Rust code has completely replaced the previous HermitCore
implementation and only a few external libraries written in C remain. The resulting
implementation is then benchmarked in Chapter 4 to measure the performance
impact of the used Rust features. Identified advantages and disadvantages of the cur-
rent Rust language and toolchain are presented. Answers are given to the questions
whether Rust’s safety measures really improve the code quality and whether they
come at a major cost of performance. The thesis concludes with a brief summary
as well as ideas for future work.

2

2 Basics
This chapter provides an overview about the HermitCore operating system and the
Rust programming language. Important concepts are introduced, which are later
applied in Chapter 3 for the implementation.

2.1 The HermitCore Operating System
The hierarchical organization of current HPC systems into thousands of nodes, which
itself feature multiple processors, requires highly scalable system software. This
complexity is increasing even further with hardware trends such as Non-Uniform
Memory Access (NUMA) and Non-Uniform Cache Architecture (NUCA), so the
software stack has to adapt to these changes. On the other hand, HPC application
software often relies on stable operating system interfaces like the Portable Operat-
ing System Interface (POSIX) [1]. To fulfill all requirements, a customized version
of Linux is usually used in the HPC space [10].

However, Linux has been designed as a general-purpose multi-user multitasking
operating system. These properties add unnecessary complexity for HPC jobs and
complicate customizations. Another major problem are background tasks executed
by the kernel, which contribute to high system noise. Due to the burden of syn-
chronization in parallel systems, noise on a single processor can delay the execution
of other processors and have a huge negative impact on the overall performance.
Tsafrir et al. have provided a probabilistic argument that the effect of system noise
is linearly proportional to the size of the cluster [2]. Therefore, measures have to be
taken to reduce the system noise to a minimum.

To address these problems, three different approaches are currently widespread:

1. Taking the fully-weight Linux kernel and removing all features not necessary
for HPC.

2. Developing a lightweight kernel for HPC applications.

3. Developing a lightweight kernel (called Multi-Kernel) that runs an HPC ap-
plication side by side to Linux and forwards all system calls to it.

Option 1 usually retains full compatibility with existing applications, but comes
at the expense of maintaining a highly modified Linux fork. Option 2 promises an
operating system tailored for the specific needs of HPC, but often lacks compatibility
with well-established operating system interfaces like POSIX. Option 3 combines

3

2 Basics

advantages of both previous approaches. However, this requires the setup of two
kernels and system call forwarding may hamper performance.

HermitCore represents a new approach to address the problems of HPC systems.
On the one hand, it has been designed as a library operating system, also called
Unikernel [3]. As such, application and kernel code are compiled together into
a single optimized binary, which can run directly on hardware or inside a virtual
machine. There is no user and privilege separation, so all code runs in the same
memory address space. Consequently, system calls become simple function calls,
whereas they often lead to expensive context switches in general-purpose operating
systems. Moreover, the absence of periodic clock ticks highly reduces the system
noise compared to Linux. All these factors guarantee maximum performance and
predictable runtime behavior for HPC needs. By also providing support for the
GCC toolchain, Message Passing Interface (MPI), OpenMP, and POSIX, existing
HPC applications can easily be built for HermitCore.

On the other hand, HermitCore can also work as a Multi-Kernel side by side to
Linux on dedicated processors. This enables running the performance-critical part
of an application inside HermitCore while Linux provides a fully-weight kernel for
pre- and post-processing. Some system calls can also be delegated to the Linux
system, for example to provide access to I/O devices unsupported by HermitCore.

Due to its unique design, the HermitCore kernel has been written from the ground
up and is not derived from any popular operating system family. However, some
code is shared with former projects of the ACS and Lehrstuhl für Betriebssysteme
(LfBS) institutes, such as eduOS1 and MetalSVM2.

In the following, individual aspects of the HermitCore kernel are presented in
detail.

2.1.1 Architecture Support
HermitCore has been developed for the x86-64 architecture supported by proces-
sors of Advanced Micro Devices (AMD) and Intel, with a port to ARM Limited’s
AArch64 architecture in progress3. This makes it compatible with the Intel Xeon
and AMD Opteron processor platforms as well as the Intel Xeon Phi accelerator
cards dominant in the server and supercomputing space [11].

The x86-64 architecture is a Complex Instruction Set Computer (CISC) archi-
tecture, which means that it supports a large number of powerful instructions
at the expense of a complex chip design. It has evolved as a 64-bit extension
of the 32-bit Intel i386 architecture, with the goal of supporting 64-bit memory
addressing and integer arithmetic, more registers, and cleaning up the feature set
while maintaining compatibility to existing 32-bit applications at the same time [12].

1https://github.com/RWTH-OS/eduOS
2http://www.lfbs.rwth-aachen.de/content/765.html
3https://github.com/RWTH-OS/HermitCore/tree/aarch64

4

2.1 The HermitCore Operating System

For computational-intensive applications, the x86-64 instruction set additionally
incorporates a number of Single Instruction, Multiple Data (SIMD) extensions to
allow a single integer or floating-point calculation to be performed on multiple data
values simultaneously. However, using the latest SIMD extensions in applications
requires the underlying operating system to save and restore the context of the
SIMD registers during task switches. It also has to report this to the processor and
application by setting the respective bits in the CR4 and XCR0 Control Registers.

As HermitCore has been designed with HPC applications in mind, it implements
operating system support for all Intel SIMD extensions to date (including AVX2 and
Xeon Phi’s AVX-512 extensions [1]). Furthermore, it also detects the presence of
Enhanced Intel SpeedStep Technology (EIST) power management in the processor
and adjusts that to achieve the goal of maximum performance and predictable
runtime behavior.

Even though HermitCore is engineered towards low system noise, it has to par-
tially implement interrupt events to offer support for I/O devices (like network cards)
and timers. This requires the initialization and handling of an interrupt controller
chip. Due to its x86 heritage, a typical x86-64 platform comes with two different
interrupt controller types:

• The Programmable Interrupt Controller (PIC), also called Intel 8259, has
been available since the very first IBM Personal Computer (Model 5150) in
1981. It only supports 8 interrupt lines, but can be cascaded with another
PIC to double the number of interrupt lines. With the growing number of
peripherals attached to a computer, a second PIC has been introduced in the
IBM PC/AT in 1984. Modern computers and servers still contain two PICs or
an emulation thereof, however their general usage is discouraged. Compared
to the alternative, they are slower, focused on single processor systems, and
support less interrupt lines. It should be noted though that the first interrupt
line of the first PIC in every x86 computer is connected to a Programmable
Interval Timer (PIT) running at the constant frequency of 1193182 Hz.

• The Advanced Programmable Interrupt Controller (APIC) has been intro-
duced in 1992 as a modern alternative to the legacy PICs [13]. Formerly an
extra chip on the motherboard for every processor, it has been integrated into
the processor itself since the Intel Pentium Pro in 1995 [14]. Compared to the
legacy PICs, it supports 256 interrupt vectors (of which 24 can be interrupts
of external I/O devices), memory-mapped registers for fast communication,
and Inter-Processor Interrupts (IPIs) to communicate with up to 28 = 256
processors of an SMP system. It also incorporates a programmable timer
oscillating at the processor frequency. The APIC architecture has been refined
further with the introduction of the xAPIC in the Intel Pentium 4 processor
in 2000 and the x2APIC in Intel Nehalem-based processors in 2008. Latter
one allows to address up to 232 ≈ 4 billion processors and supports access to
APIC registers through more efficient Machine-Specific Registers (MSRs).

5

2 Basics

Designed as an operating system for multiprocessor servers, HermitCore has to
use the APIC for inter-processor communication. However, it also makes use of the
APIC Timer for scheduling operating system events and handles interrupts through
the APIC. If support for the newer x2APIC is detected, the use of MSRs is preferred
over memory-mapped register access. The only exception is the early boot phase
where the frequency of the processor and APIC Timer is unknown. In that case,
HermitCore has to resort to the legacy PIC and its connected PIT oscillating at a
known constant frequency to measure the processor and APIC Timer frequencies.

All x86-64 systems boot up with only a single processor enabled. In order to run
applications on other processors in Symmetric Multiprocessing (SMP) operation,
the operating system first has to enumerate the available processors. Two different
methods provide this information in the x86-64 architecture:

• The original Intel MultiProcessor Specification of 1994 defines some default
configurations of dual-processor systems. A server manufacturer can choose
one of them and indicate it to the operating system, so it knows about the
available processors, APICs, and interrupt assignments. The refined MultiPro-
cessor Specification 1.4 of 1995 adds a MultiProcessor Configuration Table [15].
Since then, a server manufacturer can freely define the available number of
processors, APICs, and interrupt configurations. This change has also enabled
x86 servers with more than two processors.

• The Advanced Configuration and Power Interface (ACPI) has been introduced
in 1996 and updated multiple times since then. Its goal is to provide a unified
way for the operating system to access hardware, multiprocessor, and power
management information and control these aspects of a computer [16]. The
information is provided through tables that are loaded into memory when
the computer boots up. However, many of these tables contain code in
ACPI Machine Language (AML) instead of descriptive data. This requires
an operating system to ship with an interpreter for the AML code when it
wants to make use of ACPI.

Due to the complexity of the ACPI standard and the dependence on an AML
interpreter, HermitCore relies on the traditional MultiProcessor Tables to enumerate
available processors. Testing has shown that a large number of modern server
systems still provides support for these tables.

The following sections cover implementation details of several HermitCore com-
ponents. Whenever applicable, a reference to the architecture-dependent implemen-
tation for x86-64 is made.

2.1.2 Memory Manager
Managing the installed Random Access Memory (RAM) is one of the core features
of every operating system. No matter if an application relies on statically allocated

6

2.1 The HermitCore Operating System

memory at start-up or dynamically allocated memory at runtime, the operating
system needs to keep track of used and free blocks of RAM, and who may access
them.

HermitCore currently focuses on the x86-64 architecture, which uses 64-bit ad-
dresses to reference memory bytewise and comes with a Memory Management Unit
(MMU). An MMU is part of most modern computer architectures to provide support
for Virtual Memory, Memory Protection, and Cache Control. When the MMU is
enabled, the processor can no longer access physical memory directly. Instead,
each memory address (called Virtual Address) is looked up in the Page Tables and
translated into a Physical Address based on the information. These Page Tables also
reside in RAM. To speed up the translation of frequently used memory addresses,
the results of the most recent lookups are stored in the Translation Lookaside Buffer
(TLB) cache. If no page table entry exists for an address or access is denied by the
memory protection settings, a Page Fault exception is thrown, which can be freely
handled by the operating system. General-purpose operating systems use the Virtual
Memory feature to securely run multiple applications in parallel. Each application
is presented with custom Page Tables that can map the same Virtual Addresses to
different Physical Addresses in memory. This way, all applications can use the same
memory addresses without disturbing each other and no application can maliciously
overwrite memory of another application.

Page Tables in the x86-64 architecture manage memory in 212 B = 4 KiB gran-
ularity. These 4 KiB blocks are called Pages. As a single Page Table for all
possible 264

212 = 252 64-bit memory addresses in 4 KiB granularity would consume
252 · 8 B = 32 PiB, the x86-64 architecture uses two tricks:

• Because no computer system can currently be equipped with anywhere near
264 B = 16 EiB of RAM, only the lowest 48 bits of a 64-bit Virtual Memory
address are used. This provides support for up to 248 B = 256 TiB of memory.
Current x86-64 processors accept only so-called canonical addresses, where
bits 48 through 63 (counting from zero) replicate bit 47. This ensures that
no software abuses these currently unused bits for own purposes and stays
compatible with future processors that support a larger virtual address space.
In fact, an extension to a 57-bit virtual address space is currently being
prepared [17].

• Instead of using a single Page Table to look up the entire Virtual Memory
address, the x86-64 architecture divides the used 48 bits of the address into
5 parts, starting from the Most Significant Bit (MSB). Each of these parts
is 9 bits wide except for the 5th one, which is 12 bits wide. The 9-bit parts
now represent indices to smaller tables that store 29 = 512 entries and only
consume 512 · 8 B = 4 KiB each. Technically, these tables are called Page Map
Level 4 (PML4), Page Directory Pointer Table (PDPT), Page Directory (PD),
and Page Table (PT). As the tables manage memory in 4 KiB granularity, the
last 12 bits of a stored memory address would always be zero. Therefore, this

7

2 Basics

otherwise unused 5th part is used for memory protection and caching flags. A
special Huge Page flag can also be used to mark an entry in PDPT or PD as
a (larger) Page rather than a pointer to the next table. This enables the Page
Tables to manage memory in 2 MiB (Huge Page in PD) or 1 GiB (Huge Page
in PDPT) granularity. The entire addressing scheme is illustrated exemplarily
for memory mapped to a 4 KiB Page in Figure 2.1.

0112029384763
Always 1 or 0 #PML4 #PDPT #PD #PT Offset

+
Physical
Memory

PML4 PDPT PD PT

address

Physical Memory address
Index

(a) Translating a Virtual Memory address to a Physical Memory address

Physical Memory address aligned to 4 KiB Flags
01163

(b) Format of a Page Table Entry

Figure 2.1: Addressing scheme for memory mapped to a 4 KiB Page in the x86-64
architecture

To address these specifics of the x86-64 MMU, HermitCore implements a Virtual
Memory Manager, a Physical Memory Manager, a Paging component, and a Heap
Allocator. The Physical Memory Manager uses a so-called Free List to keep track of
free 4 KiB RAM blocks. This is a doubly-linked list whose entries mark the start and
end of free memory regions. They are sorted from the lowest to the highest memory
address. The Virtual Memory Manager in HermitCore uses a similarly sorted linked
list, however that list keeps track of used Virtual Memory Pages. Each first entry in
both lists is preallocated while the memory for further entries is allocated using the
HermitCore Memory Manager components. The preallocation avoids a chicken-egg
problem, because allocating a linked list entry needs memory, but memory can only
be allocated with existing entries in the list.

None of the HermitCore Memory Manager components currently make use of
Huge Pages, even though 2 MiB Pages would consume less entries in the TLB cache
and therefore could improve performance. The only exception is the HermitCore
Loader, which loads the HermitCore kernel and application to 2 MiB Huge Pages.

The Paging component traverses the Page Tables to map a Virtual Memory
address to a Physical Memory address. As previously stated, a processor can

8

2.1 The HermitCore Operating System

only access Virtual Memory addresses once its MMU has been set up. However,
each entry in the Page Tables references Physical Memory addresses. If the Paging
component modifies an entry in a Page Table, it needs to find out about a corre-
sponding Virtual Memory address for a known Physical Memory address. To make
this straightforward, the HermitCore Paging component employs a trick known as
Self-referencing Page Tables: The last entry of PML4 is set to the Physical Memory
address of PML4 itself. Due to the x86-64 architecture’s symmetric partition of
a Virtual Memory address into 9-bit indices, this makes the PML4 table available
at the Virtual Memory address 0xFFFF_FFFF_FFFF_F000. In particular, the
address translation of this Virtual Address works as follows:

1. Bits 39 through 47 of the Virtual Address are examined to determine the index
in the PML4 table. They are all 1, and therefore the last entry in PML4 is
looked up. This entry usually points to a PDPT, however it is the special self-
referencing entry and points back to the same PML4 table. As both tables
are equal in size, the MMU continues as usual and has no trouble interpreting
the PML4 table as a PDPT.

2. Now bits 30 through 38 of the Virtual Address are examined to determine the
index in the PDPT. As the bits are again all 1, the last entry in PDPT is
looked up. However, as the last entry in PML4 (looked up in step 1) points
to PML4 itself, the lookup is again happening in the same PML4 table.

3. The Virtual Address bits 21 through 29 are examined to determine the index
in the PD, and they also point to the last entry. Again, the last entry in the
PML4 is looked up.

4. Finally, bits 12 through 20 also point to the last entry in the PT. The PT in this
address translation is again the same PML4 from the beginning. Consequently,
the translation of the Virtual Memory address 0xFFFF_FFFF_FFFF_F000
has yielded a reference to manipulate the PML4 table.

In a similar fashion, individual PDPT, PD, and PT tables can be referenced with
Virtual Memory addresses by using this self-referencing entry in the PML4. For a
more detailed description of this technique, the reader is referred to [18].

While general-purpose operating systems provide a distinct PML4 for each ap-
plication, HermitCore is a single-address-space operating system supporting only
one application. Therefore, it is sufficient to set up one PML4 for the kernel and
application during boot-up and keep that for the lifetime of the application. This
also leads to a better usage of the TLB, which would otherwise be cleared on every
task switch.

Finally, HermitCore’s Heap Allocator enables the kernel to provide kmalloc and
kfree functions for dynamic memory allocation. As the Paging component only
manages memory in 4 KiB granularity, the Heap Allocator incorporates the Buddy

9

2 Basics

System to allocate and deallocate fractions of a Page. For a description of the Buddy
System, the reader is referred to [18] and [19].

It should be noted that the Heap Allocator only manages dynamic memory
allocations of kernel code. Application code usually calls the malloc and free
functions from the C library, which itself use the POSIX system call sbrk to
request memory from the operating system. As HermitCore supports only a single
application, an area of Virtual Memory is reserved for the only application during
boot-up. When the application calls sbrk, HermitCore just checks whether the
requested additional amount of Virtual Memory is within the boundaries of that
area, and grants access to it. Mapping the new Virtual Memory to Physical Memory
happens later when the application first accesses the new memory. The access causes
a Page Fault that is handled by HermitCore to request Physical Memory on demand.

While protections against malicious applications are less of a concern for HPC
operating systems, HermitCore uses the No-eXecute (NX) memory protection fea-
ture of the x86-64 architecture wherever possible. This can be used to mark certain
memory regions as pure data regions, which the processor will never interpret as
code. On general-purpose operating systems, it is heavily used to guard against
exploits of heap overflows. However, this feature is also useful for HermitCore to
detect some possible programming mistakes early.

2.1.3 Scheduler
HermitCore is designed to run only a single application, and this application is
supposed to launch as many threads as there are available processors for opti-
mal hardware utilization. However, there may be situations where an application
launches more threads than available processors. Furthermore, when network sup-
port is enabled, an additional thread runs on the boot processor to handle TCP/IP
communication. Therefore, HermitCore implements a priority-based round-robin
scheduler, supporting up to 32 different priorities [1].

Unlike general-purpose operating systems, the scheduler does not distinguish
between processes and threads. This allows for a unified handling of both as tasks.
Another characteristic of HermitCore’s scheduler are the separate task queues for
each processor. This avoids global scheduler locks when a new task is scheduled.

All modern general-purpose operating systems make use of Preemptive Multi-
tasking. This concept involves a periodic interrupt that regularly suspends the
current task of a processor and switches to another task. As a result, all tasks
get a similar amount of processor time and a single task cannot negatively impact
the scheduling of other tasks. Preemptive scheduling can also assist with fulfilling
priority constraints, or meeting deadlines in Real-Time Operating Systems (RTOSs).
In contrast to that, HermitCore is tailored for low system noise and therefore does
not implement a periodic scheduler interrupt. Instead, the scheduler is only called
when an application is blocked (through a timer or semaphore wait) or explicitly
calls the sys_yield system call. However, no more than one task runs on a processor

10

2.1 The HermitCore Operating System

anyway in the optimal usage scenario for HermitCore, so the drawbacks of this so-
called Cooperative Multitasking are negligible.

HermitCore’s scheduler is customized towards OpenMP applications. These usu-
ally come with a main manager thread and spawn several worker threads for parallel
processing. Hence, HermitCore’s sys_clone system call (used to spawn a thread
for the current application) also implements a round-robin algorithm to map each
thread to another processor. This mapping is static and does not change during the
lifetime of a thread, which promises ideal performance and cache utilization for the
optimal HermitCore usage scenario.

2.1.4 Timers

HermitCore belongs to the group of so-called tickless kernels. Traditional kernels use
a periodic timer with a constant frequency to update the internal tick counter, check
for elapsed deadlines, and regularly perform maintenance tasks (such as preemptive
scheduling). A tickless kernel, on the other hand, refrains from using a timer of
constant frequency. The operating system needs a different way of maintaining the
internal tick counter and meeting deadlines. Without the regular interrupts through
the periodic timer, the processor is woken up less often and therefore consumes less
energy, which is especially important for mobile and embedded devices. Microsoft
Windows only integrated tickless operation with Windows 8 in 2012 [20] whereas
Linux does not support full tickless operation before version 3.10 in 2013 [21].

Avoiding periodic timers also has an advantage for HPC operating systems, since
it reduces the system noise. Because HermitCore already relies on Cooperative
Multitasking and does not need periodic calls into the scheduler, implementing
tickless operation has been more straightforward than for general-purpose operating
systems:

• An internal tick counter is maintained for each processor by reading its Time
Stamp Counter (TSC) and calculating the corresponding value for a 100 Hz
timer. The TSC is an internal register of every x86-64 processor, which counts
the number of clock cycles since boot-up. It increases monotonically at a
constant frequency provided that the processor runs at a constant frequency
(which is guaranteed by HermitCore’s EIST power management settings).
Using the TSC eliminates the need for a periodic timer to count clock ticks.

• Deadlines by applications are met by using the APIC Timer in one-shot op-
eration. Every time a deadline elapses, the one-shot timer interrupts program
execution, the deadline is handled, and the APIC Timer is reprogrammed
for the next deadline. Examples for such deadlines are calls to sys_msleep
(pausing program execution for a certain time) and timing out when waiting
for a semaphore.

11

2 Basics

2.1.5 Network Support
HermitCore offers to delegate certain system calls to a Linux kernel, for exam-
ple to support additional I/O devices. Therefore, it needs a high-performance
communication interface to exchange messages between both kernels. Currently,
this communication is realized through TCP/IP, so HermitCore implements basic
network support.

Originally, this feature has been designed for the Multi-Kernel mode, with Her-
mitCore and Linux running side by side on the same computer. However, the
implementation supports multiple network adapters and can universally be used to
enable communication of HermitCore and Linux over any (virtual or real) network.
The following network adapters are used based on the detected operating mode,
virtual machine hypervisor, and Peripheral Component Interconnect (PCI) bus
devices:

• For Multi-Kernel mode, HermitCore implements a virtual network interface
known as mmnif and a counterpart in the Linux kernel. With HermitCore and
Linux running on different processors of the same computer, communication
over this interface happens through shared memory and APIC IPIs.

• If the uhyve hypervisor customized for HermitCore instances is detected, the
uhyve-net driver is loaded. It communicates directly with its counterpart in
the hypervisor through port writes and Direct Memory Access (DMA).

• For all other cases, HermitCore provides drivers for the Intel E1000 and
Realtek RTL-8139 network interfaces. These are two of the most popular
Ethernet chips used in computers and are also often emulated by virtual
machine hypervisors. Finally, a driver for the virtual vioif interface im-
plemented into many hypervisors is also provided. If any of these network
cards is detected on the PCI bus, HermitCore uses the first one to enable
networking in HermitCore.

2.1.6 Third-Party Components
HermitCore integrates several open-source third-party components to provide an
HPC operating system with POSIX compatibility. Within the scope of this thesis,
the following components had to be considered:

• The HermitCore toolchain includes the Binutils4 and GNU Compiler Col-
lection (GCC)5 enhanced by a x86_64-hermit target to compile binaries for
HermitCore. The compiler kit comes with support for the C, C++, Fortran,
and Go programming languages. Particularly to support the latter one and
its lightweight threads known as goroutines, HermitCore implements the un-
common POSIX functions getcontext, makecontext, and setcontext.

4https://www.gnu.org/software/binutils
5https://gcc.gnu.org

12

2.2 The Rust Programming Language

• Newlib6 serves as the C library for HermitCore. Due to Newlib’s design
towards embedded systems without any operating system, HermitCore only
needs to implement a low number of system calls to support a C library.

• A version of POSIX Threads for Embedded systems (PTE)7 adapted to Her-
mitCore provides the popular Pthreads interface. Apart from using OpenMP,
this offers another way to write multithreaded code for HermitCore.

• The embedded Lightweight IP (lwIP)8 stack is integrated to handle TCP/IP
communication of a HermitCore instance.

• HermitCore uses the CMake9 build system to compile the library operating
system, dependencies, applications, and link them together into self-contained
images.

2.2 The Rust Programming Language
C and C++ are two of the most popular programming languages in 2018 [22],
and the dominant languages for writing low-level system software. C has been
invented between 1969 and 1973 to provide a structured and typed language as an
alternative to assembly for the then upcoming byte-oriented computers. Its history
is closely tied to that of the Unix operating system, which has been rewritten in
C in 1973. With the rising popularity of Unix and its proven portability to a
variety of computer systems, C has become the language of choice for developing all
kinds of software [23]. C++ has emerged between 1979 and 1985 as an attempt to
extend C with high-level features such as classes and improved type checking while
maintaining backward compatibility to C [24]. Today, C++ is often used to write
complex applications (such as Adobe Photoshop), extend software originally written
in C (such as Microsoft Windows), and it even provides the base for higher level
frameworks (like Java or .NET).

Despite the popularity of C and C++, both languages are not without criticism.
Their handling of memory as mere pointer addresses easily leads to buffer overflows
and invalid memory accesses when used incorrectly. Such programming mistakes
are common and do not just cause software malfunctions, but can also induce
severe security issues [7]. Also C++ is frequently criticized for its complexity. Two
programs written in C++ often use different subsets of the language, and when
these subsets do not match, code from one program cannot be trivially imported
into the other program [25]. Finally, the development of programming languages has
not stopped with C and C++. Since then, new languages have emerged to improve
on the mistakes of the existing ones without the need of staying compatible. The

6https://sourceware.org/newlib
7http://pthreads-emb.sourceforge.net
8https://savannah.nongnu.org/projects/lwip
9https://cmake.org

13

2 Basics

new concepts also include a native support of concurrency from the programming
language, which is not provided by C or C++.

Rust is a modern programming language, which originated out of dissatisfaction
with C++ [8]. Development began in 2006 and is sponsored by Mozilla Research
since 2009 [4]. Its goal is to provide a language to build safe and concurrent
systems while retaining full control over memory and other resources [5]. Unlike
other popular languages of 2018, such as C#, Java, JavaScript, or Python, Rust
is a language compiled for the target processor and suitable for programming it
in a low-level fashion. Nevertheless, it also integrates many features for high-level
programming. While resembling some C++ properties (like Generic Programming,
RAII, and Smart Pointers), Rust has also taken inspiration from other modern
programming languages.

The following sections explain some characteristics of Rust, along with their
origins, benefits, and suitability for the task.

2.2.1 The Rust Toolchain
The first Rust compiler has been written in OCaml, but the compiler has since been
rewritten in Rust itself, and this new compiler is self-hosting since 2011 [26]. This
makes the Rust toolchain one of the largest projects currently using and influencing
Rust, another notable one being the Mozilla Servo browser engine.

The Rust compiler rustc builds upon the open-source LLVM compiler framework.
As such, it only needs to provide a single translator from Rust to LLVM Interme-
diate Representation (IR) and LLVM is responsible for translating IR to optimized
assembly language for each supported target processor.

Most of the time, rustc is not called manually, but by the build tool and package
manager cargo. This tool supports convenient configuration files for describing the
build process and required dependencies of a Rust program. If desired, Cargo can
automatically download open-source dependencies in the specified version from the
public Rust repository Crates.io. For more complex situations, Cargo allows the
build process to be controlled with Rust code itself. Often Cargo obviates the need
for an external build tool and helps to keep the build process consistent among
multiple Rust projects.

Apart from the build process, Rust also tries to keep the code documentation con-
sistent for all projects. Therefore, it ships with rustdoc, a tool that automatically
generates well-formatted HTML documentation from project source files. This is
comparable to Doxygen for C/C++ and Javadoc for Java. Providing rustdoc as
part of the basic toolchain advises developers to document their code and maintain
a uniform comment style.

Finally, the Rust toolchain extends LLVM’s debugger LLDB to provide support for
source-level debugging of Rust code. When LLDB is started using the wrapper script
rust-lldb, the debugger can render Rust-specific types (like enum) in a readable
way. Rust also extends the well-known GNU Debugger (GDB) with a similar rust-
gdb wrapper script. As GDB is known as a mature debugger, integrated into many

14

2.2 The Rust Programming Language

development environments, and its support for Rust is currently better than LLDB’s
according to [27], it has been preferred within this thesis.

Due to LLVM’s generation of GNU-compatible object files, tools of the LLVM
toolchain may be accompanied by GNU tools during the build process. This com-
patibility has been utilized within this thesis: The existing HermitCore C codebase
(compiled by GNU GCC) could be extended by Rust code (compiled by LLVM-
based rustc) and later the same GNU ld linker as for the C codebase has been
used to link all components together.

The Rust project maintains multiple release channels for the toolchain, the most
important ones being stable and nightly. Components can be downloaded from them
using the rustup tool. Stable versions represent supported releases containing only
mature features. These features are guaranteed to remain compatible with every
new version of the Rust toolchain. Nightly versions incorporate the latest features
under development, however these are subject to change. This also includes features
important for operating system development, such as inline assembly and structure
alignment. Therefore, a nightly version has been used within this thesis, precisely
rustc 1.22.0-nightly (17f56c549 2017-09-21).

2.2.2 Basic Safety Features
Rust’s attempt at creating safer applications starts with safer defaults. Every
declared variable is immutable by default, meaning that it can only be assigned
once and not modified anymore. If that is required, an explicit declaration with mut
is necessary. This way, the compiler can catch attempts where variables are modified
by mistake and discourages reusing the same variable for different purposes.

A similar rule applies to variables inside structures and functions. By default,
these are private and can only be accessed by code within the same module. Adding
the pub keyword makes them public. This is again different to C/C++, which makes
these elements public by default and provides the static keyword to mark one as
private. The Rust defaults are safer, because private elements are less likely to be
exposed by mistake.

Control structures like if and while always require braces to specify their start
and end. A control structure that only encompasses a single line cannot be expressed
without braces. This feature of C/C++ has hardly simplified development, but can
cause logic errors when a one-line if or while statement is later extended by a
second line. If the programmer forgets to add braces, the second line is always
executed independent of the condition. This has already been the root cause of a
serious security vulnerability in the recent past [28]. Always requiring braces guards
against such mistakes.

Rust actively discourages the use of mutable global variables by marking them as
unsafe. This happens due to Rust’s goal of preventing data races: If two threads
simultaneously modified the same global variable, the result would be undefined.
Therefore, global variables are only safe if they are set once as immutable ones or

15

2 Basics

if guarded by a thread-safe lock that serializes access. In all other cases, any code
that accesses a mutable global variable must be enclosed in an unsafe block.

2.2.3 Expressions and Statements
Both C/C++ and Rust belong to the class of expression-based languages. The
entire code in expression-based languages consists of expressions and statements. An
expression always yields a value, which can be assigned to a variable. For instance,
every mathematical operation is an expression. In contrast to that, a statement
never returns a value, but has side effects.

C/C++ has originally been designed with a clear distinction between both cat-
egories. First and foremost, control structures like conditionals (if), loops (for,
while), and jumps (goto) are statements whereas all operators for variables are
expressions. However, this also includes the assignment operator. While it is often
used as a statement with the side effect of assigning a value to a variable, it also
yields this value as a result. Therefore, C and C++ allow writing x = y = 1 to
assign the value 1 to both variables x and y simultaneously. On the contrary, this
is also the reason why the compiler accepts both if (x = 1) and if (x == 1), a
common typing mistake. While the former variant assigns 1 to the variable x and
always evaluates to true, the latter one correctly checks x for equality with 1. Doing
this mistake can have serious security consequences, such as the one illustrated in
[29]. Another exception in the C/C++ language design is the ternary operator.
It allows writing conditional expressions such as x = y > 5 ? 1 : 0. However,
this duplicates the if statement, only for the sake of maintaining the distinction
between expressions and statements. The same example code can be written using
an if statement: if (y > 5) { x = 1; } else { x = 0; }

Rust features a clean design that puts a focus on expressions. Rust’s only existing
statement, in the sense that it returns no value at all, is the let keyword to introduce
a variable and optionally assign it to an initial value. Everything else is an expression
yielding a value. That value may be of the empty type () though, which is Rust’s
way of specifying expressions with no meaningful return value [30]. This design has
many consequences:

• Conditionals and loops can be used just like their counterparts in C/C++,
but also as expressions. The conditional expression example above in Rust
would be written as x = if y > 5 { 1 } else { 0 }. Rust does not need
an extra ternary operator for this.

• Rust can implement the assignment operator in a way that it yields the empty
type (). This does not allow the x = y = 1 syntax from C/C++ to assign
two variables at once. However, it prevents assignments inside conditionals
and therefore guards against mixing up the assignment operator = and the
equality operator ==.

16

2.2 The Rust Programming Language

• The last line of a function (or generally any scope) can return a value simply
by specifying an expression. For example, return x; as the last line of a
C/C++ function can be replaced by an even simpler x (without semicolon) in
Rust. Anyway, the return x; syntax is still supported for returning early in
a function.

It should be noted that both C/C++ and Rust allow expressions to be turned into
statements by discarding their result. This can have security implications though
when a return value of a function must be checked for success and this is forgotten.
Therefore, Rust allows marking individual return types with the must_use attribute
to trigger a warning when a result of that type is discarded. By default, this applies
to the generic Result return type.

2.2.4 Arrays, Slices, and Strings
Just like in most other programming languages, Rust supports handling contiguous
objects of the same type and calls these arrays. Elements of an array can be
addressed by their index. However, while C/C++ simply calculates and accesses
a memory address based on the index (valid or not), Rust first checks whether the
desired index is within the boundaries of the array. If that is not the case, program
execution is stopped with an unrecoverable error (called a panic). This security
feature may incur a little overhead at runtime, but guards against one type of buffer
overflows.

Slices are specific to Rust and reference a part of an array. The part is described
by a memory reference to the starting byte and a length field. Having such a basic
type at the language level has a substantial security advantage, because Rust can
again use the length field to bounds-check each access and prevent buffer overflows.

Consequently, slices also form the basis for a safe low-level type to represent
strings (called str). In contrast to that, traditional C strings are arrays of characters
terminated by a NUL character. To write safe applications, C developers are required
to perform length checks manually, which can be cumbersome calculations prone to
errors. Forgotten or improperly done length checks are a frequent cause for security
vulnerabilities through buffer overflows. Therefore, the overhead of bounds-checking
slices and strings in Rust is generally tolerated for the added security. Several string
classes have been implemented in C++ that are not prone to the security problems
of C strings. However, with no mutually agreed standard at the language level, these
are hardly universally usable in every project. They also rely on dynamic memory
allocations, which are often avoided for developing operating system kernel code.

2.2.5 Generic Programming
Many programming languages support a technique called Generic Programming,
which enables developers to write universal algorithms once that can later be in-
stantiated for many types. A common example is an array that does not have a

17

2 Basics

fixed size, but dynamically grows with the number of elements added to it. The
standard libraries of C++ and Rust provide such a universal container for any type
under the name vector.

Both C++ and Rust support Generic Programming, however their implementa-
tions are vastly different. C++ provides the template system to develop universal
functions and classes. When instantiating a template, the compiler tries to expand
the type placeholders into the actual types. It may be unsuccessful at doing so, for
example when code deep within the template performs mathematical operations,
but the template is instantiated with a non-numeric type. In this case, the compiler
outputs a complex error message referring to the code line of the mathematical
operation. If the user only knows about the template specification, but not its
concrete implementation, this error message can be confusing and makes it hard to
track down the problem to the non-numeric type. C++ also supports specialization
to let a developer provide a different or optimized template implementation for
a specific type. Furthermore, the C++ template system does not only support
placeholders for types, but also for values. Just like type placeholders, expressions
given to these values are evaluated at compile-time. All these properties of C++
templates can be used together for Template Metaprogramming (TMP), a powerful
technique to implement algorithms executed by the compiler during code generation.
TMP is considered turing-complete, however it is a mere byproduct of the C++
template features and lacks decent debugging capabilities. Development and usage
of TMP code is prone to complex and unhelpful error messages by the C++ compiler.

Rust’s take on Generic Programming is inspired from the type checking in Haskell
and ML languages [9]. In contrast to C++, the declaration of a generic function
or structure has to specify each interface a type needs to implement. The compiler
only accepts instantiations with types that implement all required interfaces and
otherwise cancels the build process early with a descriptive error message. As a
consequence, the generic code may also call no functions that depend on an interface
not specified in the declaration. Stable releases of Rust do not yet support any way
for generic code to provide a different or optimized function implementation based
on type constraints. However, such a specialization feature is being worked on and
already available in nightly builds of the Rust toolchain [31].

The interfaces are called traits in Rust. The simplest traits serve as markers
and do not specify any other constraints. An example for this is the Copy trait.
When a type implements Copy, it indicates that an independent duplicate of it can
be created simply by copying its bytes. For instance, every primitive integer type
implements Copy. A vector (Vec) does not, because a bytewise copy of it would
duplicate memory references, so they still point to the original memory addresses
afterwards. Traits may also specify functions a type needs to implement or constants
it needs to provide. An example for both is the Add trait, which requires an add
function to perform the addition and the resulting type of the addition from every
implementer. This allows for the implementation of additions of different integer
types, but also of more advanced structures (like SystemTime + Duration).

18

2.2 The Rust Programming Language

Overall, C++ and Rust are hardly comparable in the discipline of Generic Pro-
gramming. The template system of C++ generally provides more features, among
them metaprogramming, but these come at the expense of debuggability and type
safety. On the other hand, generic code in Rust is based on precise interface require-
ments and the Rust compiler provides useful error messages during the development.
Either system can provide advantages and disadvantages based on the situation.

2.2.6 Pattern Matching
To support a structured handling of multiple cases, Rust provides the concept of
Pattern Matching using the match keyword. It is roughly comparable to the switch
statement in C/C++, however Rust’s Pattern Matching is more powerful and has
its roots in a similar concept from OCaml and SML [9].

Rust’s implementation of structured case handling starts with safer defaults.
Whereas the code for a C/C++ case label is executed until a break statement,
the handler for a case in Rust’s match statement exits at the next case. This fall-
through feature of C/C++ can be used to support handling multiple cases with the
same code. On the other hand, an undesired fall-through due to a forgotten break
easily happens, and has already been the cause of security vulnerabilities in the past
[32]. As long as a developer does not generally forbid fall-throughs for a project, the
C/C++ compiler cannot catch the erroneous ones.

Rust provides an extended syntax for structured case handling. To let a single
code block handle multiple cases, these cases can be combined with the pipe symbol |
(e.g. 1 | 2) or by matching a range of values (e.g. 2 ... 7). The compiler always
checks whether a match block addresses all possible cases, and otherwise stops the
build process. However, the underscore symbol _ may be used to provide a default
handler for all unmatched cases.

Another useful feature of Pattern Matching is the destructuring of compound
types like enums. This is exemplified in Listing 2.1 for the Result type. Rust’s
Result type is an enum usable as the return value of a function to either indicate
success along with a value or failure along with error information. Destructuring is
used to access the value and error information in a match block.

match result {
Ok(val) => println! (" Success and the value is {}", val),
Err(e) => println! (" Failure with error {}", e),

}

Listing 2.1: Exemplary destructuring of a compound type in a match block

Destructuring is not limited to match blocks though. It may also be used in if
blocks together with a let keyword. Taking Listing 2.1 again, in case only the Ok
result is interesting, it can be checked by writing if let Ok(val) = result.

19

2 Basics

Finally, Pattern Matching supports several additional features not covered here.
For these, the reader is referred to [33].

2.2.7 Ownership, References, and Borrowing
On the one hand, Rust aims to be a compiled systems language with deterministic
memory management and full control over stack and heap allocations, just like C
and C++. On the other hand, a second goal of Rust is to guarantee the validity of
memory references at all stages of a program in order to prevent common mistakes
in C/C++ code. This latter goal has only been accomplished by languages like C#
and Java in the past. However, they do that by using a Garbage Collector that looks
for no longer used memory from time to time, incurring an overhead at runtime and
making memory management non-deterministic.

To fulfill both goals at the same time, the Rust programming language features the
unique Ownership model. This model guarantees memory safety without needing a
Garbage Collector. Instead, it imposes three basic rules on the usage of variables,
and these rules are checked at compile time [34]:

1. Each value in Rust has a variable that’s called its owner.

2. There can only be one owner at a time.

3. When the owner goes out of scope, the value will be dropped.

The far-reaching implications of these rules are best illustrated by some examples.
For instance, a dynamically sized vector of 32-bit integers called vec1 with the two
elements 42 and 1337 can be initialized by writing

let vec1: Vec <i32 > = vec! [42, 1337];

This allocates memory for the vector on the heap and defines the variable vec1
as its owner. C programmers would now need to manually call free to deallocate
the associated memory when it is no longer needed. They have to take care that
free is only called once, but also in every exit path of the function. Otherwise,
memory is either deallocated twice or not deallocated at all, resulting in possible
heap corruptions with security implications or memory leaks. A Rust programmer
does not need to care about this, because rule 3 guarantees that the associated
memory is deallocated as soon as the owning variable goes out of scope. The
deallocation takes place automatically at every exit path of the function. Due to
rule 2, it is also guaranteed that the same memory is never deallocated twice. This
is still comparable to the RAII pattern of C++, which also allows for an automatic
resource deinitialization when a variable leaves its scope. However, in contrast to
Rust, RAII is just one possible pattern in C++ and not enforced at the language

20

2.2 The Rust Programming Language

level. A usual consequence in C++ programs is that some variables are deinitialized
automatically while others need to be freed manually.

In the Rust example code, the variable vec1 may now be passed to another
function process_vector declared as

fn process_vector (input_vec : Vec <i32 >)

When this function is called as process_vector(vec1), Rust’s Ownership model
causes the value of vec1 to be moved to input_vec inside process_vector. In other
words, input_vec consumes the variable vec1 and the ownership for the underlying
memory is transferred. Due to rule 2, the variable vec1 cannot be used anymore after
this ownership transfer, and the compiler stops with an error when attempting to
do so. Unless the ownership is transferred yet another time in process_vector, all
associated memory for the vector is deallocated when leaving process_vector and
input_vec goes out of scope. This behavior is characteristic to Rust and different
to what other programming languages do in such a situation. For instance, a similar
process_vector function in C++ may implicitly allocate a new vector input_vec
and copy all data from vec1 into input_vec. This could be a very memory and
time consuming operation if the vector contained many elements. C++ supports
passing a reference to vec1 instead by using the & character. However, this single
character can easily be forgotten without any compiler warning, possibly resulting
in huge performance penalties [35].

There are many cases though, where a variable shall stay usable after passing it
to a function. Like C++, Rust supports the concept of References for these cases.
By writing an ampersand in front of Vec<i32> in the function declaration above,
the function takes a reference to a variable instead of consuming it. The call also
changes to process_vector(&vec1). Passing a variable by reference does not cause
a transfer of ownership. Instead, the variable is borrowed from the caller until the
called function returns. The variable vec1 remains the only owner of the associated
memory and is still responsible for deallocating it when the variable leaves its scope.

It is important to note that a borrowed variable passed like this is immutable,
unlike a consumed one. By exchanging & with &mut, mutable references can be
created. However, this triggers the Borrow Checker of the Rust compiler: This step
verifies that there is never more than one mutable reference to a variable at the same
time. It also prevents mutable references from being created while other immutable
references to the same variable exist. These additional rules contribute to Rust’s
goal of preventing data races: With only one mutable reference to a variable at any
time, two threads cannot modify the same value simultaneously. Users of immutable
references can also be sure that the referenced variable does not change while the
reference is held. In any case, multiple immutable references to the same variable
are no problem, because none of the users can change the variable’s value [36].

21

2 Basics

Rust’s references share some similarities with raw pointers from C/C++. How-
ever, the strict rules enforced by the Rust compiler ensure that references always
point to initialized memory of existing variables. On the other hand, pointers may
be null, reference memory that has already been freed, or memory never initialized
at all.

Finally, Rust also supports duplicating a variable to have two copies of it. This
is called cloning. However, unlike C++, expensive cloning operations never happen
implicitly in Rust. The programmer explicitly has to call the clone function to
indicate that a copy of the variable is desired.

The examples above are deliberately based on the Vec type, which allocates heap
memory and is expensive to clone. Rust’s behavior of preventing implicit copies
makes sense here. However, another category are the primitive types (such as
bool, char, or i32), which are entirely allocated on the stack. Cloning them is
a lightweight operation. The types indicate this by implementing the Copy trait.
Therefore, passing such variables to a function or assigning one to another variable
creates an implicit copy instead of transferring ownership. This obviates the need for
explicit clone calls and makes handling these types no harder than in C and C++.
The added simplicity comes at no expense to performance, because it is limited to
lightweight types implementing the Copy trait.

Despite the advantages of Rust’s rules, there are corner cases impossible to im-
plement as long as these rules are enforced at compile time. A typical example
is the doubly-linked list data structure. Every node of a doubly-linked list shall
contain a mutable reference to the previous and the next element. Using two &mut
references per node would violate Rust’s rule of having no more than one mutable
reference to any variable at the same time. Nevertheless, a doubly-linked list can
be developed without resorting to unsafe Rust functions. For this situation, the
Rust standard library provides the Rc container. It implements reference counting,
meaning that every clone of it increments an internal counter and every dropped
clone decrements that counter. When the counter reaches zero, the associated
memory is automatically freed. Thread safety is maintained by allowing access to
the referenced variable only through the provided borrow and borrow_mut functions.
These implement the borrow-checking rules from above at runtime. When any rule
is violated, for instance when two threads try to modify the same doubly-linked
list node simultaneously, program execution is stopped with an unrecoverable error
(called a panic). Borrow-checking at runtime incurs some overhead, however the
added safety often outweighs that.

2.2.8 Foreign Function Interfaces

As Rust implements some features in a unique way (such as Generic Programming),
it requires its own Application Binary Interface (ABI) to link different pieces of
Rust code together into a single compiled binary. Currently, this ABI is not static

22

2.2 The Rust Programming Language

and subject to change with every Rust release10. Moreover, it is incompatible
with the popular ABIs defined by the C programming language for each processor
architecture. Nevertheless, Rust implements a Foreign Function Interface (FFI) to
let Rust code interact with C code. This is especially relevant within this thesis,
because existing HermitCore components written in C are gradually replaced by
components written in Rust. These Rust components need to be called from C
functions and vice-versa. For the former case, Rust provides two options:

• Declaring a Rust function with extern "C" compiles it using the C ABI
defined for the current processor architecture. It can then be called by Rust
and C code just like any other function written in C. While only a single
C ABI (also known as calling convention) has been defined for the x86-64
architecture targeted within this thesis, multiple different ABIs exist for other
architectures. For a complete list of the ones supported by Rust, the reader is
referred to [37].

• Adding the no_mangle attribute to a function turns off the so-called name
mangling. By default, the Rust compiler encodes the library name, module
hierarchy, and a hash of the type information in an exported function name.
For example, an exported function called abort defined in a module scheduler
of the library hermit_rs gets the long and non-memorable mangled name
_ZN9hermit_rs9scheduler5abort17h25817f4396886865E.
When Rust code interfaces with other Rust code, name mangling happens in
the background and is of no concern. It ensures that called functions accept
the supplied parameters and prevents conflicts when two abort functions are
exported from different modules. However, mangled names are impractical
when a Rust function shall be called from C code. If no_mangle was used for
the abort function above, this function could be called from C code by doing
a usual abort() call.

Currently, not all possible C functions can be rewritten in Rust. For example, Rust
does not yet support writing C-compatible functions that take a variadic number of
parameters11. A typical representative of this class of functions is printf.

The FFI also supports calling C functions from Rust code. For that, every external
C function needs to be declared with its parameters and return value in an extern
"C" block. It can then be called almost like any other Rust function. The main
difference is that calls to C functions always need to be enclosed in an unsafe block,
because Rust cannot make any safety guarantees about such external code.

C functions do not support Rust references, but often deal with raw pointer
addresses. These are also required to facilitate low-level hardware development in
Rust. Therefore, Rust implements support for raw pointers as well. Every reference,
or integer of type usize, can be freely converted into a raw pointer. However,
10https://github.com/rust-lang/rfcs/issues/600
11https://github.com/rust-lang/rust/issues/44930

23

2 Basics

dereferencing such a pointer can only happen in an unsafe block, because Rust
cannot make any guarantees about the memory behind a pointer. When reading
from a raw pointer in Rust, it is usually good practice to perform some sanity checks
and then convert the pointer to a Rust reference in a short unsafe block. Further
accesses can then happen by using the reference without additional unsafe blocks.

Finally, writing an operating system requires another class of functions to be
implemented, namely interrupt handlers. This thesis targets the x86-64 processor
architecture, so handling interrupts for this architecture is explained in the following:
As soon as an interrupt occurs, program execution is transferred to the interrupt
handler, without saving the context of the code currently being executed. Therefore,
every interrupt handler needs to save the registers it modifies and restore them when
completing its work. It also needs to return with the iret instruction as opposed
to ret to indicate that interrupt handling has completed. Many programming
languages require such code to be written in assembly language, because they lack
native support for writing interrupt handlers conforming to these requirements.
However, Rust implements the abi_x86_interrupt feature in nightly builds. When
it is activated, functions can be declared with extern "x86-interrupt" to mark
them as interrupt handler functions. Processor registers modified within such func-
tions are correctly saved and restored, and iret is used for exiting.

2.2.9 Crates for Operating System Development
When developing code that is later going to be used by multiple programs, most
programming languages offer a way to write it once without the need to duplicate
it for every program. In C, this is known as creating a library while Java calls this
a package.

Rust also supports this method and calls the result a crate. Crates can be kept
private or published online for others to reuse. Many open-source crates are available
on the Rust repository Crates.io and come with a well-defined and well-documented
interface. Including such a crate in a Rust project is often as simple as adding a
single line to the Cargo configuration file with the name of the crate and the desired
version. It is then automatically downloaded and compiled during the build process.
However, Cargo also supports using local crates.

Numerous crates are available on Crates.io, which aid in the development of an
operating system in Rust. The following have been used within this thesis:

• The bitflags crate enables Rust code to comfortably manipulate bitmask flags
in integer types. These are often needed when programming hardware or
interfacing with functions written in C. A set of flags is defined through a
struct containing each flag as a constant. Currently, this crate is among the
top 10 most-downloaded crates on Crates.io, and also a popular dependency
of other crates.

• The lazy_static crate works around a limitation of global variables in Rust.
By default, they need to be initialized with a constant value at declaration.

24

2.2 The Rust Programming Language

This excludes dynamic memory allocations and any kind of code executed
at runtime. This crate offers a way to initialize individual global variables at
runtime on their first access, thereby enabling the use of dynamically computed
values. At the time of writing, it is also among the top 10 most-downloaded
crates on Crates.io.

• The raw-cpuid crate offers comfortable Rust functions to examine the result
of the x86/x86-64 cpuid instruction. This is commonly used to gather in-
formation about the installed processor and its features. As such, it can be
considered fundamental for developing an x86-64 operating system in Rust.

• The x86 crate from the same developer offers several convenience functions
and data structures to comfortably program a 32-bit x86 or 64-bit x86-64
processor at hardware level. This includes setting up the Global Descriptor
Table (GDT) for memory segmentation and Interrupt Descriptor Table (IDT)
for interrupts, Task State Segments (TSSs) for multitasking as well as Control
Registers (CRs) and Machine-Specific Registers (MSRs). At the time of
writing, a fork of it called x86_64 is available, which exclusively targets the
64-bit x86-64 architecture and is under more active development. However,
the former crate is more popular at the time of writing, has been deemed
sufficient for this thesis, and is therefore used for HermitCore.

• Finally, the spin crate implements some synchronization primitives based on
spinning. They do not need any operating system support and can therefore
be used for developing an operating system. However, only the specialized
Once and RwLock variants have been used within this thesis. The former
one can be used to run a code path only once (e.g. for initialization) and
skip it on further calls. The latter one provides a lock that enables multiple
readers but only a single writer to access a resource. Further locks have
been implemented manually within this thesis to account for the specific
requirements of HermitCore.

25

3 Implementation
Based on the concepts introduced in Chapter 2, key components of the HermitCore
operating system have been successively ported to the Rust programming language.
This chapter details their Rust implementation and integration into the existing set
of components written in C.

3.1 Goals
In order to benefit from the advantages of Rust, HermitCore components have not
been ported by simply conducting a one-to-one translation of the existing C code.
Instead, the functionality of each component has been studied to create a Rust
implementation that is compatible to the required C interfaces on the outside, but
may work differently on the inside. This often resulted in a total rewrite of each
component rather than a simple port. To make these rewrites as advantageous as
possible, the following additional goals have been defined:

• As a start, the Rust components shall only target the Unikernel mode of
HermitCore. This mode can easily be tested in any virtual machine and
it builds the foundation for all other features. Implementing and verifying
support for the Multi-Kernel mode or specialized virtual machine hypervisors
(like uhyve) is beyond the scope of this thesis. However, the Rust components
shall be developed flexible enough to account for a later implementation of
these features.

• The amount of Rust code marked as unsafe shall be kept as small as possible.
The only exceptions are global variables, which are designed to be exclusively
mutated by the single kernel thread on the boot processor. Guarding them
by synchronization primitives would guarantee safe Rust code, but imply that
they are mutated concurrently.

• Safe and maintainable code shall be preferred even if it could have a negative
impact on performance or memory consumption. The actual performance of
the final code is measured in Chapter 4. Additionally, as an operating system
for HPC applications, HermitCore is not constrained by memory limitations
like an embedded operating system would be.

• The Resource Acquisition Is Initialization (RAII) pattern shall be used wher-
ever possible. Instead of relying on manual kmalloc and kfree calls, the

27

3 Implementation

allocation and deallocation of kernel memory shall happen automatically by
using the respective containers in Rust (such as Box or Vec).

• The x86-64 architecture-specific code shall refrain from implementing any
code paths that are only relevant for older 32-bit x86 processors. Due to
its MetalSVM heritage and traditional best practices, the HermitCore C code
sometimes checks the availability of features that every x86-64 processor pro-
vides. It also implements some legacy features, which have been superseded
by more modern equivalents on x86-64 processors.

• In case of error conditions, the operating system shall immediately halt with
a Rust panic and a descriptive error message instead of propagating an error
code to the caller. Without any form of user input supported in the kernel,
most HermitCore errors are unrecoverable. As such, there is no added value
but a loss of information when propagating an error code instead of halting
directly.

3.2 Console Output
As the first step, the Rust code needs to be able to output messages on the console to
give status information and aid with debugging. In HermitCore, this usually means
transmitting these messages over a (physical or virtual) serial port with a terminal
connected to the other end. Therefore, the HermitCore C code initializes the serial
port early. It also integrates a standalone version of the popular printf function
for kernel usage and implements some macros around it. These macros add support
for different message levels (errors, warnings, information, etc.) and prepend each
message with additional information, like an identifier of the current processor. The
message level that shall be output by HermitCore is configured at compile-time.

Instead of an external printf implementation, the Rust code uses the built-in
formatting features of the programming language. They support constructing a
message out of a formatting string with placeholders and arguments similarly to
printf. However, Rust already interprets the formatting string at compile-time.
This prevents common mistakes of printf, like unresolved or incorrectly typed
placeholders. Using the formatting features for transmitting messages only requires
an empty structure implementing the write_char and write_str functions of the
fmt::Write trait. The former function simply forwards to uart_putchar of the C
serial port code while the latter function calls write_char for each character. At a
later stage, the uart_putchar function as well as the entire serial port initialization
code has also been replaced by Rust code. The Rust version always outputs messages
on the first serial port (address 0x3F8) with the maximum baudrate of 115200 bps.
In contrast to that, the C code scans the PCI bus for serial port cards and initializes
the first one with 38400 bps. This is a less likely configuration and requires a more
complicated virtual machine setup.

28

3.3 Build System

To allow for basic debugging of computers that do not have a serial port, the
Rust version also implements a screen output of all messages. This is currently not
provided by the HermitCore C implementation.

3.3 Build System
The CMake build system is responsible for building the HermitCore kernel, all
dependent libraries, and HermitCore applications. As the Rust code is added next
to the existing C code, the Rust toolchain needed to be integrated into a CMake
environment. For all other programming languages, this has been done by writing
CMake configuration files for their compilers and defining the source files of each
module in CMake. However, to leverage the advantages of Rust’s Cargo build
tool, a cargo call has been integrated as a custom target hermit_rs in the CMake
configuration files instead. The HermitCore Rust code is then compiled by Cargo
and can therefore easily import crates like any other Rust project. After building
the Rust code, the added CMake configuration merges the resulting library with the
HermitCore C library into a single libhermit.a file. This library is then picked up
by the CMake build process for building HermitCore applications.

At a later stage of development, the CMake build process has been enhanced by
the addition of prebuild steps. One of them is assembling the SMP boot code and
writing it into an array of a Rust source file, so it can be used for the initialization
step in Section 3.5.5. This is accomplished by adding a custom command in CMake,
which is defined to output that source file and set as a dependency of hermit_rs.
While external code is usually imported through use statements, Rust also supports
an include! macro to include the generated Rust source file and make use of the
SMP boot code array.

Finally, another custom target doc has been added to the CMake configuration file.
This target calls cargo with the rustdoc argument and additional parameters to
generate a code documentation of the entire HermitCore Rust source code, including
all private members.

3.4 Memory Manager
As a low-level part of HermitCore without any dependencies on other parts, the
Memory Manager has been chosen as the first candidate to be ported to Rust, in
particular its x86-64 Paging component. After that, the porting work has continued
on the Physical and Virtual Memory management.

3.4.1 Paging
As illustrated in Section 2.1.2, the Paging component maps Virtual Memory ad-
dresses to Physical Memory addresses. Apart from an initialization function, it only
makes the following functions available to other kernel code:

29

3 Implementation

• __page_map maps a Virtual Memory address to a number of contiguous 4 KiB
pages of Physical Memory at a specific address. If desired, it sends an IPI to
all other processors to let them clear their TLBs.

• page_unmap removes such a mapping.

• virt_to_phys determines the Physical Memory address for a Virtual Memory
mapping of a specific address.

From these functions, only __page_map has been considered important. Pages
do not need to be explicitly unmapped, because an abandoned page mapping is of
no concern in a single-address-space operating system without memory protection.
Instead, abandoned mappings can simply be overwritten by the next __page_map
call. Additionally, virt_to_phys is only used by network device drivers, which are
not required for HermitCore’s Unikernel mode.

The C implementation of __page_map relies on the self-referencing entry in PML4.
Due to that, all page tables appear consecutively in the Virtual Memory address
space starting at 0xFFFF_FF80_0000_0000. The implementation makes use of
this fact to treat all tables as a single large array of page table entries. An iterative
algorithm is then used to walk through PML4, PDPT, PD, and PT. During this
walk, memory is allocated for a new page table if needed until the mapping is finally
set in the page table entry.

This algorithm is very short and efficient. However, treating all page tables as a
single large array provides no protection against accessing non-existing table entries.
Furthermore, the implementation only supports 4 KiB pages while larger pages are
beneficial to HPC applications.

Therefore, the Rust implementation of the Paging component follows a different
design. It is centered around the PageTable structure, which manages an array
of 512 PageTableEntry elements. Using Rust’s Generic Programming capabilities
(cf. Section 2.2.5), PageTable can be used for PML4, PDPT, PD, and PT tables.
These 4 types are implemented as empty enums. To serve as the type parameter
for PageTable, the PageTableLevel trait is implemented for each of them. PML4,
PDPT, and PD also implement the PageTableLevelWithSubtables trait to indicate
that they have a subtable and the type of that subtable. This trick of leveraging
Rust’s typing system for a safe handling of the page table hierarchy is further detailed
in [38].

A similar Generic Programming design is used to support different page sizes.
4 KiB, 2 MiB, and 1 GiB pages are represented by BasePageSize, LargePageSize,
and HugePageSize enums. All of them have in common that they implement the
PageSize trait.

Furthermore, a PageTableMethods trait is defined to specify functions that shall
be implemented by all 4 variants of a PageTable structure. The trait is also needed
to make use of Rust’s experimental specialization feature. This allows for different
function implementations depending on whether a table has subtables (additional

30

3.4 Memory Manager

PageTable<L>
entries: [PageTableEntry; 512]
level: PhantomData<L>

PageTableEntry
physical_address_and_flags: usize
...

PageTableMethods

fn map_page_in_this_table
where L: PageTableLevel

default fn map_page

PageTableMethods
where L: PageTableLevelWithSubtables

fn map_page
where L::SubtableLevel: PageTableLevel

...

Structure Trait Overwriting a default function

(a) Simplified PageTable and PageTableEntry structures with implemented
PageTableMethods trait

PML4

PageTableLevel
LEVEL: usize = 3

PageTableLevelWithSubtables
type SubtableLevel = PDPT

PDPT

PageTableLevel
LEVEL: usize = 2

PageTableLevelWithSubtables
type SubtableLevel = PD

PD

PageTableLevel
LEVEL: usize = 1

PageTableLevelWithSubtables
type SubtableLevel = PT

PT

PageTableLevel
LEVEL: usize = 0

BasePageSize

PageSize
SIZE: usize = 4096
MAP_LEVEL: usize = 0
MAP_EXTRA_FLAG = BLANK

LargePageSize

PageSize
SIZE: usize = 2 * 1024 * 1024
MAP_LEVEL: usize = 1
MAP_EXTRA_FLAG = HUGE_PAGE

HugePageSize

PageSize
SIZE: usize = 1024 * 1024 * 1024
MAP_LEVEL: usize = 2
MAP_EXTRA_FLAG = HUGE_PAGE

Enum

Trait

(b) Empty enums with implemented traits as type parameters for the paging functions

Figure 3.1: Structure of the Paging implementation in Rust

31

3 Implementation

PageTableLevelWithSubtables trait) or not (only a PageTableLevel trait). Two
notable functions are presented in the following:

• map_page_in_this_table sets a page table entry for the Virtual Memory to
Physical Memory mapping in the current table. This function only needs a
single generic implementation for all page table types. It is internally used by
map_page.

• map_page checks the current table and the page size to decide whether the
page needs to be mapped in this table or in a subtable. In the former case, it
just calls map_page_in_this_table. However, in the latter case, any not yet
existing subtable is created and the map_page implementation for the subtable
is called recursively.
By using specialization, a default implementation is provided for all page
table types that implement PageTableLevel. This implementation is over-
written for all types which also implement PageTableLevelWithSubtables.
Consequently, there is one implementation shared by PML4, PDPT, and
PD and another implementation just for the last page table PT. The latter
implementation always calls map_page_in_this_table, because there is no
other option at the last page table level.

The discussed elements of the paging implementation are illustrated in Figure 3.1.
Finally, PageTable provides the convenience function map_pages to call map_page

in a loop for mapping a range of pages. It should be noted that all presented
functions are generic over the page size. Therefore, this design of the Paging
component enables a straightforward mapping of pages in the 4 KiB, 2 MiB, and
1 GiB page sizes supported by the x86-64 architecture. It can also easily be enhanced
by a future 5th page table level as soon as processors support it. However, the
mapping algorithm uses a recursive instead of an iterative approach. Whether this
incurs a significant performance cost is to be determined in Chapter 4.

For compatibility with the existing HermitCore C code, __page_map has been
implemented as an extern "C" function that calls map_pages with BasePageSize
to always map 4 KiB pages. In a later stage of development, this compatibility is no
longer necessary, so the __page_map function is replaced by a generic Rust function
supporting all page sizes.

3.4.2 Physical and Virtual Memory Management
The management of Physical and Virtual Memory in doubly-linked lists has proven
to be suitable for HermitCore. However, studying the C source code has revealed no
reason why the Physical Memory Manager needs to keep track of free memory blocks
while the Virtual Memory Manager needs to manage used blocks. Therefore, the
Rust implementation of both memory management components is based on a generic
FreeList structure that manages free blocks of memory. Each node of the FreeList

32

3.4 Memory Manager

marks the start and end of a free memory region. Nodes are sorted from the lowest to
the highest managed memory address. The implemented FreeList structure itself
is based on a generic doubly-linked list data structure. Rust currently does not come
with a suitable data structure for this task, so a generic DoublyLinkedList structure
has also been implemented within this thesis. The design of both components is
described in the following.

Apart from a way to initialize it with the managed memory address range, a
generic Free List needs to provide two functions at minimum:

• The allocate function is used to request a contiguous range of memory of
a specific size. The function traverses the sorted linked list from the lowest
to the highest memory address. As soon as it finds a region of free memory
large enough, this region is shrunken by the specified size, starting from the
left. Mathematically expressed, the start field is incremented by the specified
size. If the resulting size of the list node is zero afterwards (start == end),
the node is removed from the list.

• The deallocate function does the opposite and is called when giving back
a contiguous range of memory previously requested with allocate. It has
to handle more cases though: The returned memory range may extend an
existing list node to the left or right without gaps. In that case, the existing
node can simply be adjusted (Figures 3.2a and 3.2b). This adjustment may
lead to a node completely filling the gap between two previously separate
nodes. Consequently, the function can reunite both nodes into a single large
node (Figure 3.2c). However, if no node can be extended, a new node needs
to be created and inserted into the list at the right position (Figure 3.2d).

In addition to that, the FreeList structure implemented within this thesis also
provides an allocate_aligned function to allocate memory aligned to a specified
memory address boundary, and a reserve function to mark a memory region as
reserved (e.g. by memory-mapped hardware devices) and unusable for memory
allocations.

This design of the FreeList structure defines the requirements for the underlying
list data structure. First of all, the list must be iterable in the order of the nodes.
This is possible in O(1) by following the next references of a doubly-linked list. The
same operation complexity also applies to most other data structures though.

However, the more important part is the addition and deletion of nodes. The data
structure must support adding a node before or after the current iterated node, as
well as deleting the current iterated node. None of the data structures currently
provided by Rust are optimized for inserting elements in the middle. Furthermore,
removing individual elements either incurs another traversal of the data structure
(Rust’s Vec and VecDeque) or is not supported at all (Rust’s LinkedList). Using
a doubly-linked list, these operations are also possible in O(1). This is the reason
for implementing a generic DoublyLinkedList structure instead of relying on Rust-
provided data structures.

33

3 Implementation

0 2

3 4

4 5 0 3 52

(a) Extending an existing node to the left.

0 2

2 3

4 5 0 3 4 5

(b) Extending an existing node to the right.

0 3

3 4

4 5 0 5

(c) Reuniting two nodes into a single large one when a new node completely fills the gap.

0 1

2 3

4 5 0 51 42 3

(d) Inserting a new node when it cannot extend any existing one.

Figure 3.2: Possible Free List cases when deallocating memory.

34

3.4 Memory Manager

In a doubly-linked list, each node has one reference to the previous node and one
reference to the next node, hence the name. To perform the required operations,
these references need to be mutable ones. However, this violates Rust’s rule of
having no more than one mutable reference to any variable at the same time.
To work around this limitation, the Rc container has been used throughout the
DoublyLinkedList implementation as described in Section 2.2.7. This allowed for
an implementation of a generic doubly-linked list structure without using a single
unsafe block.

Using the generic FreeList, the implementation of the actual x86-64 Physical
and Virtual Memory Managers has been straightforward. The Physical Memory
Manager determines the available RAM in the computer and adds all usable regions
to the Free List during initialization. The allocation and deallocation of Physical
Memory in BasePageSize (4 KiB) granularity is then performed by forwarding calls
to the allocate and deallocate functions of the FreeList.

The Virtual Memory Manager operates likewise. However, it is initialized to
manage a single large region starting after the kernel image and ending at address
0x1_0000_0000. This encompasses a region of almost 4 GiB in size. It is important
to note that the Virtual Memory Manager exclusively manages kernel memory
in the Rust implementation of HermitCore, which is why a 4 GiB region should
be sufficient for every case. As described in Section 2.1.2, the single HermitCore
application requests memory by enlarging and shrinking its heap through the sbrk
system call. Therefore, it only needs a single contiguous Virtual Memory region.
By managing only Virtual Memory up to address 0x1_0000_0000, the region from
0x1_0000_0000 to 0x8000_0000_0000 is implicitly available as a single contiguous
region. This amounts to approximately 128 TiB available for the application, which
is far more than most current servers provide in RAM. The entire Virtual Memory
Layout of the HermitCore Rust implementation is depicted in Figure 3.3.

≈ 128 TiB

0x8000_0000_00000x1_0000_00000

BIOS and boot loader data, with some notable areas identity-mapped in 4 KiB pages:

Kernel memory managed by Virtual Memory Manager, mapped in 4 KiB pages

Application memory, mapped in 2 MiB pages

≈ 4 GiB

HermitCore kernel image, aligned to a 2 MiB boundary and mapped in 2 MiB pages

0x0_8000 - 0x0_8FFF
0x0_9000 - 0x0_9FFF
0xF_0000 - 0xF_FFFF

Used to write the SMP boot code
Contains the Multiboot information (usually at 0x9500)
Contains the MultiProcessor Tables

Figure 3.3: Virtual Memory Layout of the HermitCore Rust implementation

35

3 Implementation

Finally, an architecture-independent Memory Manager is implemented and ex-
posed to the rest of the kernel functions. To allocate kernel memory in 4 KiB
granularity, it simply performs the following steps:

1. It verifies that no other processor currently uses the architecture-independent
Memory Manager and then locks it to the current processor.

2. It allocates the required amount of Physical Memory using the architecture-
dependent Physical Memory Manager.

3. It allocates the same amount of Virtual Memory using the architecture-dependent
Virtual Memory Manager.

4. Finally, it maps the resulting Virtual Memory address to the resulting Physical
Memory address using the architecture-dependent Paging component. This
makes the memory available and usable by kernel code.

Deallocating kernel memory happens similarly.

3.4.3 Heap Allocator
The architecture-independent Memory Manager implemented in the last section
already allows allocating and deallocating memory in 4 KiB granularity in theory.
However, two tasks remain:

1. Rust components using the RAII pattern (like Box, Rc, and Vec) rely on an
internal memory allocator provided by Rust to serve their memory requests.
This allocator is only implicitly compiled into user-space applications written
in Rust, but not when developing low-level kernel code. Therefore, the internal
memory allocator must be implemented manually based on the architecture-
independent Memory Manager from the last section. This is comparable to
overloading the new and delete operators in C++.

2. The chicken-egg problem described in Section 2.1.2 is also relevant for the
Memory Manager components implemented in Rust: As the used FreeList
is based on a DoublyLinkedList, which itself uses an Rc container for each
node, this container needs to be able to allocate memory. This is already the
goal of Task 1. However, in addition to that, the Rc container also needs to
allocate memory during the initialization of the Memory Manager for adding
the first entries into the lists. A solution must be found to allocate these first
entries without relying on the implemented Memory Manager.

To solve Task 1, the experimental alloc, allocator_api, and global_allocator
features of Rust have been activated for the HermitCore code. They have then
been employed to develop a Heap Allocator around the architecture-independent
Memory Manager, which is used internally for the allocation and deallocation of

36

3.4 Memory Manager

memory by Rust components. While the original HermitCore Heap Allocator in C
comes with a Buddy System to efficiently manage fractions of a page, the current
Heap Allocator implemented in Rust simply rounds up each allocation to the next
4 KiB boundary. This causes a waste of memory, especially for small allocations
� 4 KiB. However, this has been considered acceptable within this thesis, because
HermitCore is currently not constrained by memory limitations due to its design
towards HPC systems (cf. Section 3.1). Furthermore, the majority of dynamic
memory allocations from kernel code occur during the boot phase of HermitCore,
so most out-of-memory conditions can be caught before the application is started.
Apart from this, always allocating at least a single page with every dynamic memory
request provides ideal conditions for testing the stability of the Memory Manager.
This is further discussed in the next section.

The chicken-egg problem of Task 2 has been solved by enhancing the Heap Al-
locator developed for Task 1. During the early boot phase, Rust components now
allocate memory from a preallocated static buffer instead of the list-based Memory
Manager developed above. A global index into that buffer is incremented with
every allocation. Requested memory blocks are not tracked, so deallocations do not
return any memory. However, this simple Heap Allocator has the advantage of being
available early during boot without any further initialization. Within this thesis,
it has therefore been called the Bootstrap Allocator. When initializing the actual
HermitCore Memory Manager, it is used for allocating the first entries of the Free
Lists. As soon as the HermitCore Memory Manager is ready, the system switches
over to it and further allocations no longer use the Bootstrap Allocator. Due to the
short period of time, in which the Bootstrap Allocator is used, a size of 4 KiB has
been deemed sufficient for its static buffer.

At this point, it would have been possible to implement the kmalloc and kfree
functions based on the Heap Allocator to stay compatible with dynamic memory
allocations done by the HermitCore C code. However, it has been decided to disable
all C components doing dynamic memory allocations instead, and later reimplement
these components in Rust. This decision has eventually lead to a complete rewrite
of all HermitCore components in Rust.

3.4.4 Node Pool
An important detail of the FreeList’s implementation of allocate and deallocate
in Section 3.4.2 needs special attention: If allocate finds a node that matches the
requested size exactly, it removes that node from the list, thereby implicitly leading
to a deallocation operation on the same Free List. The deallocate function is even
more complicated in this regard: If a deallocated memory region cannot extend
an existing region in the list, a node for a new region is allocated. Moreover,
if a deallocated region perfectly fills the gap between two regions, one node is
extended to encompass the entire large region while the other node is deallocated
(cf. Figure 3.2c). However, the consistency of the Free Lists is not guaranteed in the
middle of an allocation or deallocation operation. Therefore, additional allocations

37

3 Implementation

and deallocations must be serialized and may not happen while a Free List operation
is taking place.

This has led to the introduction of the Node Pool. The Node Pool is basically
another doubly-linked list out of Free List nodes. Instead of allocating and deallo-
cating new nodes in the middle of a Free List operation, these are drawn from or
given back to the Node Pool. Allocations during Free List operations are prevented
this way, because the nodes in the pool have already been allocated beforehand.
Deallocations also do not happen, because nodes are not deleted, but unmounted
from one Free List and pushed again to the Node Pool.

When allocating memory using the architecture-independent Memory Manager,
the allocate function is called once for the Free List of the Physical Memory
Manager and once for the Virtual Memory Manager. Depending on the state of the
Free Lists, the Node Pool may contain 0, 1, or 2 additional nodes afterwards. As
the pool is based on a doubly-linked list, it does not need any capacity adjustments
and can accommodate an arbitrary number of additional nodes simply by chaining
them together.

Deallocating memory using the architecture-independent Memory Manager leads
to one deallocate call for the Physical Memory Manager’s Free List and another one
for the Virtual Memory Manager. In an extreme case, both deallocations perfectly
fill the gaps between neighboring memory regions and 2 nodes are returned to the
Node Pool. In the other extreme case, each deallocation needs a new node to track
the deallocated regions. The Node Pool must provide at least 2 nodes to handle
such a situation.

As a consequence, a maintain function has been implemented for the Node Pool.
It ensures that the pool contains exactly 2 nodes. Missing nodes are allocated while
surplus ones are removed and thereby deallocated from memory. This maintain
function is called by the deallocation routine of the architecture-independent Mem-
ory Manager before any Free Lists are modified.

It should be noted that the decision not to implement a Buddy System in the
previous section has helped to trigger these corner cases. With a Buddy System in
place, most allocate calls would return a part of an already allocated page without
modifying the Free Lists at all. However, the corner cases may still appear when an
entire page is allocated or deallocated.

3.5 Hardware Initialization

After a Rust-implemented Memory Manager had been successfully developed and
integrated into the HermitCore C code, the next step has been rewriting the funda-
mental hardware initialization code in Rust. The individual initialization steps and
the characteristics of their implementations in Rust are presented in the following
sections and later summarized in a diagram.

38

3.5 Hardware Initialization

3.5.1 Processor Initialization
Step 1 of the hardware initialization is detecting the boot processor and its features.
This has to happen as early as possible to adjust subsequent initialization steps to
the detected processor, but also to report processor information on the console (see
Section 3.2). A log file of the entire console output can then later be associated to
the used computer system and assist in debugging hardware-specific problems.

The original HermitCore C code implements a single function to gather infor-
mation about the features of the installed processor. It calls the x86-64 cpuid
instruction directly and parses its output through bitwise operations until it is
stored in a global structure variable. In contrast to that, the Rust code relies
on the raw-cpuid crate introduced in Section 2.2.9. This crate internally calls
cpuid and performs the required bitwise operations to gather feature information.
The actual Rust code developed for HermitCore can then use descriptive crate
functions instead of bitwise operations to check the existence of individual processor
features. This makes it shorter and more readable than its C counterpart. Moreover,
these comfortable abstractions are not expected to incur runtime costs due to the
optimizations performed by the Rust compiler.

The processor detection is followed by the processor configuration. This is facili-
tated in Rust using the x86 crate presented in Section 2.2.9. It mostly follows the
HermitCore C implementation and basic x86-64 manuals like [39] to initialize the
desired features. However, one of the goals in Section 3.1 is to avoid redundant code
paths. Several such code paths exist in the HermitCore C code, partly because they
used to serve a purpose on 32-bit x86 processors, but are no longer necessary for
64-bit x86-64 processors. This approach shall keep the resulting Rust code shorter
and better maintainable than its original C equivalent. In particular, the following
code paths during the processor configuration have been identified as redundant:

• Checking support for the No-eXecute (NX) bit
This feature is guaranteed to be supported by all x86-64 processors. As a
consequence, it is now enabled unconditionally and by the boot assembly code.
This makes NX memory protection already available when mapping the first
page with Rust code.

• Checking the existence of a Floating-Point Unit (FPU) and basic
SIMD extensions
All x86-64 processors come with an FPU and the MMX, SSE, and SSE2 SIMD
extensions. This also includes the fxsave/fxrstor instructions to save and
restore registers used by these extensions. There is no reason to ever use the
older fsave/frstor pair, which does not support SSE.

• Supporting two ways of setting the FS and GS registers
All x86-64 processors support setting the special FS and GS segmentation
registers through MSRs from kernel code. Newer processors also implement the
wrfsbase and wrgsbase instructions to let an application set these registers

39

3 Implementation

from user mode. The HermitCore C code prefers the newer instructions over
the older MSRs, however this has no advantages for a single-address-space
operating system. Therefore, the Rust code always uses the MSRs.

Both the C and Rust version of the processor configuration code also adjust EIST
power management settings. If support for these settings is detected, the processor is
set to operate at maximum performance and a constant frequency. This guarantees
a predictable runtime behavior for HPC applications and allows the use of the Time
Stamp Counter (TSC) as a reliable clock source.

3.5.2 Global Descriptor Table
The next hardware initialization step is the setup of the Global Descriptor Table
(GDT). The GDT contains settings for dividing the Virtual Memory address space
between code and data as well as kernel and application. A basic GDT has already
been set up by the boot assembly code just to enter the 64-bit mode of the processor.
However, this table is recreated during the initialization of HermitCore with all
needed settings for normal operation. This includes a single entry for kernel code
and another one for kernel data. General-purpose operating systems usually create
additional entries for application code and application data, but this is not necessary
for a single-address-space operating system like HermitCore.

The GDT also contains Task State Segments (TSSs). HermitCore makes use of
Task State Segments to define separate stacks for tasks and interrupt/exception
handlers. An x86-64 processor automatically sets the internal stack pointer to such
a separate stack when an interrupt or exception occurs and the original task stack
pointer is restored when the interrupt/exception handler has finished. As a result,
a handler cannot corrupt the stack of the current task and vice-versa.

While external interrupts shall only be handled by the boot processor, processor
exceptions can occur on every processor. Therefore, the stacks need to be allocated
per processor. The C version of the TSS setup code always allocates 3 stacks of 8 KiB
for 256 processors statically. For the Rust implementation, the Memory Manager
has already been initialized at this stage, so it is possible to allocate the stacks
dynamically and only for each processor that is actually installed. This also removes
one occurrence of a strict limitation to a maximum number of processors.

The GDT setup code has again employed functions of the x86 crate to comfortably
create the table. However, it originally lacked support for adding TSS entries on
x86-64 processors. Therefore, this feature has been implemented into the x86 crate
within this thesis and submitted upstream.

3.5.3 Interrupts and Exceptions
After initializing the GDT and a TSS, hardware initialization continues with the
setup of interrupt and exception handlers. An x86-64 processor manages them in

40

3.5 Hardware Initialization

the Interrupt Descriptor Table (IDT). Setting up the IDT in Rust could again be
done by means of the x86 crate.

However, another topic is the implementation of the actual handler functions:
Most C compilers have no specific support for writing x86-64 interrupt/exception
handlers. Therefore, the original HermitCore implementation splits up the handler
functions into multiple parts:

• A prolog written in assembly and duplicated for each interrupt and exception,
which saves all registers and calls a common C routine with the number of the
interrupt/exception

• A common C routine, which looks up the specific handler routine in a function
pointer table (for interrupts) or prints the according exception message (for
exceptions)

• An epilog written in assembly that restores the saved registers and returns
with iret

This design has been revised for the Rust implementation of interrupt and excep-
tion handlers. As described in Section 2.2.8, Rust allows functions to be declared
with extern "x86-interrupt" to mark them as interrupt or exception handler
functions. These functions automatically save and restore used registers and return
with iret. Consequently, assembly prologs and epilogs are no longer necessary,
neither is an additional function pointer table. As a result, the code for an interrupt
or exception handler is not just more comfortable to write in Rust, but also carries
less overhead.

External interrupts in HermitCore are currently limited to timer interrupts, and
network adapter interrupts for the Multi-Kernel mode. They are meant to be
handled by the Advanced Programmable Interrupt Controller (APIC) as soon as
it has been initialized (see Section 3.5.5). However, Section 2.1.1 describes that
HermitCore may use the legacy Programmable Interrupt Controllers (PICs) and
their connected Programmable Interval Timer (PIT) to determine the processor
frequency. As the Rust implementation detects the processor frequency in the next
initialization step, the PICs need to be prepared at this stage.

Due to a design mistake in the very first IBM Personal Computer from 1981,
PIC 1 signals interrupt numbers 8 to 15 by default. However, any x86-64 or former
x86 processor reserves the range from 0 to 31 for processor exceptions. When any
of these interrupts occur, the operating system cannot reliably detect whether it is
an external interrupt or a processor exception. Therefore, every modern operating
system for a x86-64 processor remaps PIC 1 to report interrupts in the range 32
to 39, and PIC 2 to the range 40 to 47. This remapping code is common and
well-documented, for example in [40]. For the HermitCore Rust code, it has been
implemented similarly, but additionally masks all external interrupts by default.
This prevents unexpected interrupts, for example by keystrokes. However, imple-
menting an interrupt handler routine now also requires unmasking the respective
interrupt beforehand.

41

3 Implementation

After completing this initialization, the operating system enables interrupts and
exceptions for the first time.

3.5.4 Processor Frequency Detection
In the next step, the Rust code detects and reports the frequency of the boot
processor. Disabling power management in Section 3.5.1 ensures that this frequency
is constant and does not vary depending on the load. Knowing about the processor
frequency is important in order to use the TSC for the calculation of 100 Hz ticks.
It is also used to calibrate the APIC Timer, as well as for timing calculations in the
HermitCore port of newlib.

The original HermitCore C code detects the frequency using 3 methods. For the
Rust version, another reliable method has been found, so it tries out the following
detection methods in this order:

1. The command-line parameter -freq
The -freq parameter allows specifying the processor frequency in MHz as a
boot loader command-line parameter. If this parameter is found, the specified
frequency is used without consulting the processor at all.

2. The CPUID Frequency Information (added for the Rust implementation)
An appropriate cpuid call on newer processors returns multiple internal fre-
quencies. If this feature is available, the detection code uses the Base Fre-
quency as the processor frequency, which is the constant frequency when power
management is disabled. However, testing has revealed that this feature is only
available in Intel processors starting with the Skylake microarchitecture from
2015 [41]. Therefore, a different solution is required for older processors.

3. The CPUID Brand String
The cpuid instruction on all x86-64 processors can also return a so-called
Brand String. For x86-64 Intel processors, this string is guaranteed to con-
tain information about the nominal frequency and parsing this information
is described in [39]. The Rust implementation follows this guideline, but in
contrast to it, only frequencies in the GHz range are considered, because no
x86-64 processors in the MHz or THz range are currently known.

4. Measurement
Finally, if all previous methods failed, the processor frequency is measured.
This happens by configuring the PIT to interrupt with a timer frequency of
fPIT = 100 Hz and counting each interrupt handler call (tick). When starting
the measurement, the current TSC value and PIT tick count is read. After
nticks = 3 PIT ticks have elapsed, the TSC is read again and the difference is
calculated. This difference ncycles specifies the number of instructions executed
within nticks PIT ticks. Hence, the processor frequency is calculated by

42

3.5 Hardware Initialization

fprocessor = fPIT · ncycles

nticks

This method is implemented similarly in the C and Rust version of Hermit-
Core. However, the Rust version should have a slightly better accuracy due
to the lower overhead of the interrupt handler. This method is also the sole
reason why the processor frequency detection may only happen after interrupts
and the PICs have been configured.

All 4 methods make use of Rust’s comfortable Result type. A successful frequency
detection is reported by returning Ok whereas Err is returned otherwise. In contrast
to simple boolean return values, this type triggers a warning when a caller does
not check the return value. It also provides the comfortable or_else method to
concatenate the calls to all 4 methods without writing a series of if clauses.

3.5.5 APIC and SMP
In the final hardware initialization step, the Local Advanced Programmable Inter-
rupt Controller (APIC) of the boot processor is configured and the other processors
(called application processors) are booted for Symmetric Multiprocessing (SMP)
operation. This is considered one step, because both tasks are closely related: Their
configuration information is derived from the same tables and application processors
are initialized by sending Inter-Processor Interrupts (IPIs) using APIC functions.

Configuring the boot processor’s Local APIC begins by reading these tables and
storing information about the Local APIC IDs of all installed processors as well as
the address of the memory-mapped Local APIC of every processor. The Local APIC
ID is a unique number inside a computer system to address the Local APIC of a
specific processor and therefore the processor itself. Due to the reasons outlined in
Section 2.1.1, the HermitCore C implementation relies on the MultiProcessor Tables
provided by a MultiProcessor Specification 1.4-compliant computer system to gather
this information. This also applies to the Rust implementation. However, the Rust
implementation encapsulates the entire parsing code for the MultiProcessor Tables
in a single function. This design simplifies a later implementation of a parser for
the more popular ACPI tables, should one become necessary in the future.

The configuration continues by determining the APIC operating mode. All x86-64
processors support the xAPIC mode, which exposes APIC registers on a Physical
Memory address that needs to be mapped to a Virtual Memory address. Newer
processors further support the x2APIC, which can address more processors and
exposes its registers over more efficient MSRs. If support for x2APIC is detected,
this mode is enabled and used in the following. Otherwise, a Virtual Memory page
is requested and the address of the memory-mapped Local APIC is assigned to it.

A notable difference between the C and Rust implementation of the APIC code
lies in the function that writes to a Local APIC register. The Rust version of that
function can be universally used for xAPIC and x2APIC mode. It always takes

43

3 Implementation

an x2APIC MSR address and a 64-bit value, which it can simply forward to the
wrmsr instruction in x2APIC operating mode. If the Local APIC runs in xAPIC
mode instead, the function automatically translates the x2APIC MSR address to
an xAPIC memory address and adapts the value to the required format for xAPIC
operation. The underlying code is presented in Appendix A.1. On the contrary, the
C implementation often needs different code paths for x2APIC and xAPIC mode,
making the code more complex and harder to maintain.

Configuring the Local APIC is concluded by registering the required interrupt
handlers and disabling unused ones. As soon as the interrupt number for the spurious
interrupt is set, the Local APIC is enabled and starts delivering interrupts to the
processor.

After enabling interrupts, the APIC code configures the APIC Timer. HermitCore
later uses this timer in one-shot operation to schedule the next deadline. In this
operating mode, the counter of the APIC Timer is set to a start value and this value
is counted down at a constant frequency until it reaches zero. At that point, an
interrupt is signaled and the timer is deactivated until the counter is reset.

Unlike the PIT, the frequency of the APIC Timer is not known. However, the
processor frequency is known at this stage, so the APIC Timer frequency can be
measured by using the processor’s TSC. As all operating system events are later
scheduled relative to a 100 Hz timer, an appropriate counter start value ncounter,start
for a single tick of that timer shall be determined. To improve measurement
accuracy, a value for nticks = 3 ticks is determined and later divided by nticks. The
detailed implementation is as follows:

1. The APIC Timer is started by setting the counter to the maximum 32-bit
value ncounter,max = 232 − 1.

2. The current value nTSC of the processor’s TSC is read and used to calculate

nTSC,end = nTSC + nticks · fprocessor

100 Hz

3. A busy-waiting loop is entered and constantly updates nTSC with the current
value of the processor’s TSC. The loop is exited as soon as nTSC ≥ nTSC,end.

4. The current value ncounter of the APIC Timer counter register is read. Finally,
the counter start value is calculated by

ncounter,start = ncounter,max − ncounter

nticks

HermitCore can now configure the APIC Timer to signal an interrupt in 100 Hz
tick granularity by initializing the counter register with an integer multiple of
ncounter,start.

44

3.5 Hardware Initialization

It should be noted that the APIC Timer internally divides its counter frequency
by a constant value. The HermitCore C version configures this divisor to 1 to get
maximum accuracy from the timer. However, this results in a large ncounter,start,
and multiples of it easily overflow the 32-bit counter register. Consequently, the
maximum duration of an APIC Timer one-shot timeout is highly constrained in the
C implementation. Testing has shown that the maximum supported divisor of 128
still provides enough accuracy for a single tick of a 100 Hz timer while supporting
128x longer timeouts. Therefore, the Rust implementation configures the divisor
to 128 before measuring the APIC Timer frequency. The equations above are
independent of the divisor as long as the divisor is set in advance and remains
constant afterwards.

Finally, all prerequisites are met to boot application processors and enable SMP
operation. A possible algorithm for the x86-64 architecture is standardized and
described in [15]. However, this algorithm also considers 32-bit Intel486 and Intel
Pentium processors, so it could be implemented in a simplified manner for the Rust
version of HermitCore.

For each processor, an INIT IPI needs to be sent first. This IPI resets the
processor to an initial state. After this IPI, Intel486 and Pentium processors already
begin executing the Basic Input/Output System (BIOS) boot code. Consequently,
the so-called BIOS Reset Vector needs to be programmed in advance to instruct the
BIOS to jump to a custom SMP boot code. However, this behavior of the INIT
IPI does not apply to later 32-bit processors and all 64-bit x86-64 processors. They
are reset to a halted state and only begin executing code on the first STARTUP
IPI. Furthermore, the address of the SMP boot code is sent directly with the
STARTUP IPI. Therefore, the Rust code does not need to reprogram the BIOS
Reset Vector. Moreover, it does not send a second STARTUP IPI either as stated
in the standardized algorithm. Testing has shown that this is no longer necessary
and the SMP boot code is already executed after the first STARTUP IPI. This is
also confirmed by [42].

The HermitCore SMP boot code switches an application processor from 16-bit to
32-bit to 64-bit mode and then calls into the shared boot code for all processors.
For the HermitCore Rust implementation, the shared boot code detects that it
boots an application processor, skips some initialization steps that have already
been performed by the boot processor, and finally calls a Rust entry point specific
to application processors. Rust code now performs the remaining per-processor
initialization steps. As a final step, the shared processor counter is incremented
to let the boot processor know that the current application processor has finished
booting. The boot processor then initializes the next application processor.

All installed processors are assumed to be equal models of equal frequency. There-
fore, steps like processor frequency detection and APIC Timer measurement are only
done once for the boot processor and then the results are applied to all application
processors.

45

3 Implementation

3.5.6 Boot Process Diagram
The diagram in Figure 3.4 summarizes the individual steps of the boot process and
hardware initialization of the HermitCore Rust implementation.

3.6 Per-Processor Variables
HermitCore supports variables, which hold a different value on each processor. This
is useful when a processor needs to store information that is only relevant for
itself. Examples for such per-processor information are the own Local APIC ID,
the internal tick counter, and a reference to the processor’s task scheduler. Both the
C and Rust versions of HermitCore support per-processor variables, however their
implementations are fundamentally different.

The C version introduces a .percore section in the HermitCore image file. Every
per-processor variable is declared to be part of the .percore section. During the
build process, the linker script of the HermitCore toolchain instructs the linker to
enlarge the .percore section to 256x its size (as determined by the space taken by
all declared per-processor variables). As a consequence, memory for up to 256
processors to store different variable values is statically allocated when booting
HermitCore. The kernel first initializes all per-processor values to the values of
the boot processor and zeroes the boot processor’s GS register. Each application
processor sets its GS register to the offset of the .percore section reserved for it.
The macros per_core and set_per_core then allow access to the per-processor
value of a variable. They make use of the segmentation feature of x86-64 processors,
which enables the FS and GS registers to be used in a mov instruction to add an offset
to the given memory address. For example, the instruction movl %gs:(core_id),
eax determines the memory address of the variable core_id, adds the offset stored
in the GS register, and loads the 32-bit value stored at the resulting address into
the EAX register.

In the beginning, this concept has been implemented similarly in Rust. However,
it has since been rewritten entirely to make use of dynamic allocations and remove
the limitation to 256 processors. The new implementation requires all per-processor
variables to be fields of a global PERCORE structure. This structure is statically
allocated once for the boot processor, and dynamically allocated every time a new
application processor is booted. The GS register of each processor then stores the
memory address to its PERCORE structure.

Each field of PERCORE is declared using the generic type PerCoreVariable with
the actual variable type as a type parameter. The declaration and fields of PERCORE
are given in Listing 3.1.

PerCoreVariable implements get and set functions that use a mov instruction
with segmentation similar to the C version. As different mov instructions are needed
based on the size of the variable type, Rust’s specialization feature is used again.
By default, the get and set implementations use the movq instruction to handle

46

3.6 Per-Processor Variables

Multiboot-compliant loader (e.g. GRUB, PXELINUX)

HermitCore Loader

Switch to 64-bit mode and call Rust entry point
entry.asm

lib.rs
Get the HermitCore image from the Multiboot information,
move it to a 2 MiB boundary and jump to its entry point

HermitCore Kernel

entry.asm
Set stack pointer, remap image to 2 MiB pages,

enable NX bit, and call Rust entry point for the boot processor

lib.rs
Initialize processor’s PERCORE structure and serial console output

Detect processor features and configure the processor

Initialize screen output of the console messages

Initialize Physical and Virtual Memory Management

Initialize GDT and processor’s TSS

Initialize Interrupts and Exceptions (IDT, PICs, and handlers),

Detect the processor frequency

Scan the PCI bus

Initialize the Local APIC

Boot application processors for SMP operation

Application Processor

boot.asm
Switch from 16-bit to 32-bit

to 64-bit mode, enable NX bit

entry.asm
Set stack pointer and call Rust

entry point for the

lib.rs
Initialize processor’s PERCORE

Configure the processor

Load GDT and processor’s TSS

Load IDT

and enable them

Initialize the Local APIC

Enable Interrupts and
Exceptions

application processor

structure

Figure 3.4: Boot process of the HermitCore Rust version including all hardware
initialization steps

47

3 Implementation

64-bit values. This covers 64-bit integer types and all pointers. 32-bit values such
as the Local APIC ID are handled with a specialized implementation of get and
set, which uses the movl instruction instead.

Due to the dynamic allocations, this implementation of per-processor variable
support is not limited to a maximum number of processors. It does not need any
toolchain support in the form of a .percore section either. Finally, the new version
also ensures that only the value for the current processor can be accessed. The
C version does not prevent accessing a per-processor variable directly by its name
instead of using the per_core and set_per_core macros. This would always yield
or modify the variable value stored for the boot processor.

It should be noted that either implementation highly depends on characteristics of
the x86-64 architecture. Implementing support for a new architecture in HermitCore
requires an architecture-specific implementation of per-processor variables as well.

pub static mut PERCORE : PerCoreVariables
= PerCoreVariables :: new (0);

pub struct PerCoreVariables {
/// APIC ID of this CPU Core.
core_id : PerCoreVariable <u32 >,
/// Scheduler for this CPU Core.
scheduler : PerCoreVariable <* mut PerCoreScheduler >,
/// Task State Segment (TSS) allocated for this CPU Core.
pub tss: PerCoreVariable <* mut TaskStateSegment >,
/// Value returned by RDTSC / RDTSCP last time the timer
/// ticks were updated in processor :: update_timer_ticks .
pub last_rdtsc : PerCoreVariable <u64 >,
/// Counted ticks of a timer with the constant frequency
/// specified in processor :: TIMER_FREQUENCY .
pub timer_ticks : PerCoreVariable <usize >,

}

Listing 3.1: Declaration and fields of the PERCORE structure

48

3.7 Scheduler

3.7 Scheduler
The design of the task scheduler of the HermitCore C version has been presented
in Section 2.1.3. Instead of writing a new scheduler in Rust based on that C code,
the existing scheduler from the eduOS-rs Rust operating system project could be
imported. The eduOS-rs project1 is currently being developed in parallel at the ACS
and provides a basic educational operating system written in Rust.

The eduOS-rs scheduler is a priority-based round-robin scheduler centered around
a Scheduler structure. During boot, a single instance of that structure is initialized
along with a Task structure for the idle task. When the operating system has finished
initialization, it enters an infinite loop that calls into the schedule function. All
tasks ready to schedule are collected in the ready queue and sorted by task priority.
The schedule function checks if a task with a higher priority than the current
task is available, and then calls the switch assembly function to switch to that
task. The assembly function saves the context of the current task, changes the stack
pointers in the TSS, and finally restores the context of the new task. This context
includes all registers and flags, including the instruction pointer. Therefore, the new
task continues exactly at the position where it has last stopped before switching to
another task. If a new task is running for the first time, the scheduler has manually
created an initial context for it, with the instruction pointer referencing the task’s
entry point. Consequently, the schedule function can also be used for spawning
new tasks. In case no task is available, the scheduler switches back to the idle task,
which continues in the infinite loop.

This scheduler generally implements the required functionality for HermitCore.
However, eduOS-rs is currently a single-processor operating system. Therefore,
the imported scheduler code has been heavily adapted for SMP operation. Based
on the general Scheduler structure of eduOS-rs, a PerCoreScheduler structure
has been introduced, which is allocated for each processor during boot and only
manages the tasks for that single processor. Each processor has a quick access to
its PerCoreScheduler instance through a per-processor pointer variable (cf. Sec-
tion 3.6). Additionally, all PerCoreScheduler instances are collected in a BTreeMap
and sorted by the Local APIC ID corresponding to a processor. This enables one
processor to schedule tasks on another processor, for example when spawning a new
task or cloning an existing one.

Unlike eduOS-rs, the semaphore synchronization primitive implemented for Her-
mitCore supports acquiring a semaphore with a timeout. Consequently, when a
task cannot acquire the semaphore directly, it is blocked until either another task
releases the semaphore or the timeout expires. To prevent both events from possibly
occurring at the same time, they have been centrally serialized in the blocked_tasks
queue of PerCoreScheduler. Blocking and unblocking a task can only happen
through functions of the blocked_tasks queue. Unblocking a task is implemented
by looking it up and removing it from the blocked_tasks queue before adding

1https://rwth-os.github.io/eduOS-rs

49

3 Implementation

it back to the ready queue. This prevents unblocking a task twice by concurrent
events.

When adapting the eduOS-rs Rust scheduler for SMP operation, a clear distinction
needs to be made between variables accessed concurrently and requiring synchro-
nization, and variables accessed only by a single processor. In the end, only 3
variables needed to be protected by interrupt-safe spinlocks:

• The state field of PerCoreScheduler
This field contains the queue of ready tasks waiting to be scheduled and a
boolean value indicating whether the processor is halted. It is important that
both fields are guarded by a single lock. The reason for this is explained in
the following.

• The blocked_tasks field of PerCoreScheduler
This field contains all blocked tasks of this processor’s scheduler, sorted by
their timeouts (if any). This queue must be guarded by a lock, because a task
releasing a resource may unblock a task on a different processor. Additionally,
tasks may be unblocked by timeouts from the timer interrupt handler.

• The global TASKS variable
This BTreeMap centrally collects all Task structures and their unique IDs in
the operating system. Every new task on every processor updates this global
variable, so a synchronization is inevitable.

It is important that the used spinlocks disable interrupts. Otherwise, the timer
interrupt handler may be called and try to lock one of these variables while they
are already locked by other scheduler code. The result would be a deadlock and an
interrupt handler that never returns.

During the evaluation of the HermitCore scheduler in Rust, a severe problem
has been uncovered: When only the idle task is available, both eduOS-rs and
the HermitCore scheduler in C reenable interrupts with sti and later use the hlt
instruction to halt the processor until the next interrupt. This way, the processor
does not needlessly loop and can therefore reduce its power consumption. Another
processor can wake it up by creating a new task for the halted processor and then
sending an IPI. However, a race condition occurs when this IPI is received after
the processor has reenabled interrupts but before it has called hlt. In that case,
the processor is woken up while running and then halted anyway, although a new
task is available. This problem can be solved by reenabling interrupts and halting
the processor in one atomic operation. Intel guarantees that the exact sequence
sti; hlt is executed atomically [43]. Therefore, the scheduler has been reworked
to disable interrupts for the entire critical path and only reenable them with the
sti; hlt sequence when switching to the idle task.

To minimize operating system noise from interrupts, a wake-up IPI is only sent
when the processor has really been halted. Another processor could figure this
out by checking the current task of the possibly halted processor. If that current

50

3.8 Features Not Covered

task is the idle task, a wake-up IPI should be sent. However, this would require a
synchronization primitive around the current_task field of PerCoreScheduler. As
most system calls access the current task, their performance would be hampered due
to the required locking. Therefore, a boolean value is_halted has been introduced,
which is set right before the sti; hlt sequence and locked together with the
ready_queue field. Whenever a processor creates a task on another processor, it
already locks the ready queue, so it can now check the is_halted value as well.

Finally, unsafe Shared pointers in the eduOS-rs scheduler have been replaced by
safe reference-counted ones using the Rc container. This decision has highly reduced
the amount of required unsafe blocks in the scheduler.

3.8 Features Not Covered
Several additional features have already been implemented in the Rust version of
HermitCore, however detailed explanations of them would exceed the scope of this
thesis.

To prepare for Multi-Kernel mode, the Lightweight IP (lwIP) TCP/IP stack has
been integrated along with a driver for the Intel E1000 Ethernet adapter. As no
adequate network stack written in Rust is currently available, this step required
designing a Rust interface around the lwIP C interface. Adapting lwIP to work with
Rust also improved the design of HermitCore in general, because synchronization
primitives that used to be implemented in included header files are now properly
exported as system calls by the operating system. The network components are
compiled with every build of HermitCore, but currently remain disabled due to a
lack of testing.

Network support also requires enumerating the PCI bus. This is currently ac-
complished by probing for all possible 32 devices per bus on the first 32 PCI buses.
Multi-function adapters and bridges are not considered, however these are rarely
required for PCI network adapters. The results of the enumeration are output on
the console, with vendor and device IDs resolved to names. For this feature, a copy
of the PCI ID database from [44] has been added to the HermitCore source tree and
is preprocessed into a series of Rust arrays by a prebuild step.

Additionally, the Rust version of HermitCore provides 4 synchronization primi-
tives: Spinlocks, interrupt-safe spinlocks, semaphores, and recursive mutexes. These
have been written from scratch and not imported from an external crate like spin,
because their implementations need to account for the specifics of HermitCore. For
example, semaphores and recursive mutexes call into the scheduler to block a task
when they cannot acquire a lock directly. Other than that, the implemented versions
follow the publicly documented behaviors for such synchronization primitives, so a
more detailed explanation would be of little value. For a general explanation of
these synchronization primitives, the reader is referred to [45].

Finally, HermitCore is booted in Unikernel mode by a custom boot loader as
shown in Figure 3.4. It initializes console output and basic memory management

51

3 Implementation

in order to move the HermitCore image to the next 2 MiB boundary. After that, it
jumps to the entry point of the moved HermitCore kernel, which can then map the
entire HermitCore image in 2 MiB pages for a better TLB usage. Within this thesis,
the boot loader has also been rewritten in Rust. By making use of the same bitflags
and x86 crates as well as the HermitCore paging and serial port modules, the actual
boot loader code is kept small and easily maintainable. However, the current Rust
boot loader offers no additional features compared to its counterpart written in C,
so it is not presented in more detail.

52

4 Evaluation
In this chapter, the implemented Rust version of HermitCore is evaluated in terms
of performance, maintainability, and hardware compatibility.

4.1 Test Systems
While most of the testing during development has been conducted inside QEMU
virtual machines, accurate performance measurements require running HermitCore
on real hardware. Additionally, actual hardware often differs in details from the
specification and the QEMU implementation, so testing on real hardware is in-
evitable for ensuring compatibility. To guarantee a maximum level of hardware
compatibility, a broad variety of systems has been used as listed in Table 4.1.

System 1 System 2 System 3
Processors: 2x Quad-Core Intel 2x Dual-Core AMD Dual-Core Intel

Xeon L5630, Opteron 270, Core 2 Duo T7300,
2.13 GHz, with SMT 2.00 GHz 2.00 GHz

Mainboard: Supermicro X8DTH-6 Rioworks HDAMA Lenovo ThinkPad X61
Chipset: Intel 5520 AMD-8111/8131 Intel GM965
RAM: 32 GiB 4 GiB 3 GiB
APIC: xAPIC xAPIC xAPIC
Serial port: Yes Yes Yes
MP 1.4: Yes Yes Yes

System 4 System 5 System 6
Processors: Dual-Core Intel 2x 10-Core Intel Dual-Core AMD

Core i7-640LM, Xeon E5-2650 v3, Turion 64 X2 TL-56,
2.13 GHz, with SMT 2.30 GHz, with SMT 1.60 GHz

Mainboard: Lenovo ThinkPad X201s Supermicro X10DAi Dell Latitude D531
Chipset: Intel QM57 Intel C612 AMD M690T
RAM: 8 GiB 64 GiB 2 GiB
APIC: xAPIC x2APIC xAPIC
Serial port: No No Yes
MP 1.4: Yes Yes No

Table 4.1: Systems used for testing HermitCore

53

4 Evaluation

System 1 is a 2010-era server system featuring 2 processors, 4 cores per processor,
and Simultaneous Multithreading (SMT) to expose each core as 2 (also known as
Intel HyperThreading). This totals to 16 processors that should be seen by the
operating system. Additionally, the system features a serial port, so all console
messages can be redirected to a terminal that saves a log file. This is required for
running the benchmarks and makes System 1 the preferred one for benchmarking.

System 2 features a 2003-era server mainboard with 2005-era processors. With
that configuration, it comes close to the very first x86-64 systems that have ever been
released. Testing HermitCore on such an early system validates the hypotheses
about all x86-64 systems from Section 3.5.1. It is also the only MultiProcessor
Specification 1.4-compliant test system based on AMD processors.

System 3 is a 2007-era business laptop with a serial port. Running HermitCore
on this system confirms the hypothesis that also modern non-server systems still
provide MultiProcessor Specification 1.4-compliant MultiProcessor Tables.

System 4 from 2010 validates the same hypothesis, however its usefulness for
testing HermitCore is limited by its lack of a serial port. It can still output console
messages on the screen though, so basic debugging is possible.

System 5 is the 2014-era server used for benchmarking HermitCore in [1]. Due to
its lack of a serial port, it could not be used for logging benchmark results in the
Rust version of HermitCore. However, among the test systems, it is the only one
providing x2APIC mode.

Finally, System 6 is another 2007-era business laptop with serial port, but based
on an AMD processor. However, testing has revealed that this machine is not
MultiProcessor Specification 1.4-compliant.

4.2 Hardware Compatibility
The broad variety of available systems allowed for extensive testing of the hardware
support of the HermitCore Rust version.

By featuring multiple processors, multiple cores per processor, and multiple threads
per core, as well as a serial port and MultiProcessor Specification 1.4 compliance,
System 1 has been the candidate of choice for HermitCore testing and running
further benchmarks. Booting HermitCore on this machine has worked successfully
from the beginning without any hardware-specific fixes required. However, the
operating system can only see and initialize 8 instead of 16 processors. This has
turned out to be a limitation of the MultiProcessor Specification 1.4: Processors
making use of SMT are only exposed as a single processor in the MultiProcessor
Tables [46]. Detecting all 16 processors would require implementing a parser for
ACPI tables, which exceeds the scope of this thesis.

When testing the AMD-based System 2, an early revision of the HermitCore
Rust implementation failed during the boot process. The reason was a spurious
PIC interrupt right after enabling interrupts for the first time. The same problem
could be reproduced with the other AMD-based System 6. While the root cause

54

4.3 Benchmarks

of the interrupt could not be determined, implementing a graceful handling of
spurious PIC interrupts fixed the problem. This allowed HermitCore to continue
booting and no further spurious interrupts occurred, which could have hampered
the predictable runtimes of the operating system. Apart from this early problem,
HermitCore works flawlessly on such an old x86-64 server system. Compared to the
first x86-64 processor, the installed AMD Opteron processor only supports SSE3 in
addition. As long as SSE3 is not used inside HermitCore code, this test validates
the hypotheses from Section 3.5.1. In particular, it proves that the operating system
does not depend on any modern processor features and is universally usable on any
x86-64 platform.

System 3 and 4 have been tested after the previous fixes and exposed no additional
problems. Like System 1, the MultiProcessor Tables of the SMT-enabled System 4
also lack information about the logical processors.

As System 5 has been used for running the benchmarks in [1], it would have been
a preferred candidate for benchmarking the HermitCore Rust version. However, its
lack of a serial port only allowed examining a few console messages on the screen
instead of logging all of them to a text file. Therefore, System 1 has been used
for benchmarking instead. Nevertheless, running the HermitCore Rust version on
System 5 has triggered a bug in the x2APIC implementation, which has been fixed
in the meantime.

Due to the lack of MultiProcessor Tables, System 6 failed to boot HermitCore at
the Local APIC initialization stage. Anyway, this test proved that the MultiProces-
sor Specification 1.4 detection code works properly and fails with a descriptive error
message when no tables are detected.

4.3 Benchmarks
The performance of the C version of the HermitCore operating system has been
evaluated with several micro-benchmarks in [1]. These benchmarks are available
as regular HermitCore applications in the HermitCore source tree, so it has been
straightforward to run them for the Rust version as well.

Due to the aforementioned reasons, System 1 has been used to run these bench-
marks. To make the results comparable, this required rerunning the C version of
HermitCore in Unikernel mode on the test system.

A bug in the current C version only allows it to boot on computers with con-
secutive Local APIC IDs. However, System 1 does not address its processors with
consecutive IDs. Therefore, the Local APIC IDs for System 1 have been determined
and entered into a fixed array in the C version. The for loop for initializing
application processors has then been modified to take the IDs from this array. This
allowed fixing the C implementation for benchmarking System 1 without changing
a lot of code.

Furthermore, extra care has been taken that network components are disabled in
both versions in order to not incur any noise from a TCP/IP background task.

55

4 Evaluation

4.3.1 Basic Micro-Benchmarks
Table 4.2 shows the results of some benchmarks run on the Rust and C versions
of HermitCore in Unikernel mode. Each benchmark warms up the caches and then
measures the average latency of a specific system operation.

Most of these benchmarks are run by the basic application shipped with the
HermitCore source code. Additionally, a taskswitch benchmark has been developed
within this thesis to measure the latency of a switch between two tasks running on
the same processor. Furthermore, a single test of the basic application had to be
adapted to consider the 2 MiB pages used in the HermitCore Rust version.

Within this thesis, these benchmarks have not been rerun on Linux, so the Linux
testing results in Table 4.2 are taken from [1].

System operation HermitCore Rust HermitCore C Linux*
getpid() 17 17 143
sched_yield() 218 100 370
malloc() 764 6080 6575
first write access to a page 27 (4 KiB), 1407 4007

925 (2 MiB)
task switch 5170 934

Table 4.2: Results of the basic micro-benchmarks on System 1 under HermitCore
and System 5 under Linux (in processor cycles)

The getpid() call is considered the shortest system call, so it serves as a measure
for the general overhead of a system call. Both the Rust and the C version of
HermitCore are on par in this benchmark. Even though the Linux benchmark has
been run on the newer and better performing System 5, the overhead of a system
call is more than 8 times higher on it. This can be explained due to the required
context switch in Linux and other general-purpose operating systems.

The sched_yield() call needs more than twice the processor cycles in the Rust
version compared to the C version. This happens, because the Rust version only
implements a single scheduler function for calling into the scheduler to check for
new or higher prioritized tasks and switch to them. This function performs cleanup
operations, locks the scheduler, and handles all possible cases. On the other hand,
the C implementation of HermitCore implements scheduler and the lightweight
check_scheduling function. The latter one is called during the sched_yield()
test and finishes quicker when no new task is available. However, it does not perform
any locking, so it may be prone to race conditions. Additionally, the maintenance
of the Rust scheduler should be easier, because only a single function needs to be
maintained. In any case, both implementations still incur less overhead than the
Linux benchmark on System 5.

The two memory micro-benchmarks are drastically faster in the HermitCore Rust
version. This is the result of using 2 MiB pages and a single large Virtual Memory

56

4.3 Benchmarks

region for application memory. In contrast to the C implementation, no lists need
to be modified when an application resizes its heap through the sbrk system call.

By default, the first write access to a page benchmark always assumes 4 KiB pages.
This makes it unsuitable for measuring the first write access to 2 MiB pages and
hence the required cycles are much lower in the HermitCore Rust implementation.
However, these results are still viable if they are reinterpreted as first write access
to 4 KiB distant data.

For the sake of completeness, this micro-benchmark has also been adapted for
2 MiB pages and run on the Rust version of HermitCore. As expected, the number
of processor cycles is much higher compared to the test assuming 4 KiB pages.
However, the Rust version still outperforms the C version in this regard. This proves
a positive performance impact of the simpler application memory management in
combination with the recursive Paging algorithm presented in Section 3.4.1.

Finally, the task switch benchmark again shows the better performance of the C
scheduler compared to the Rust version. The current Rust scheduler needs more
than 5x as many cycles as the C implementation for switching between tasks. The
additional cycles probably stem from the borrow-checking and reference-counting
happening at runtime in the Rust implementation.

4.3.2 Hourglass Benchmark
The Hourglass benchmark has been presented in [47] to measure the operating
system noise. It continuously reads the processor’s TSC in a loop and stores the
difference to the last TSC read. In a completely noiseless system with only the
benchmark running, this difference should remain constant. However, if larger gaps
occur, a background process is stealing processor time from the application.

HermitCore Rust HermitCore C Linux*
Minimum 24 24 40
Average 30.14 30.15 69.46
Maximum 2551744 5372052 51840

Table 4.3: Results of the Hourglass benchmark on System 1 under HermitCore and
System 5 under Linux (in processor cycles)

The results of the Hourglass benchmark are shown in Table 4.3, with the Linux re-
sults again taken from [1]. They prove that the Rust implementation of HermitCore
created within this thesis is no more noisier than the existing C implementation.
In fact, the average number of required processor cycles over almost 283 million
iterations is close to the minimum number and several magnitudes smaller than the
maximum. Linux is more than two times as noisy as HermitCore on average, even
though the tested processors have been isolated with the isolcpu option and periodic
ticks have been disabled with nohz.

57

4 Evaluation

However, there are no simple explanations for the high maximum values of Sys-
tem 1. One reason may be the System Management Mode (SMM) triggered periodi-
cally on an x86-64 system. It is responsible for handling hardware monitoring, power
management, and vendor-specific functions in the background. Disabling these
periodic interrupts requires a customized BIOS, because the relevant configuration
registers are already locked when the operating system is booted [48]. This theory
is supported by the lower maximum values of the Linux results of System 5. It is
possible that this server has periodic SMM interrupts disabled or at least a better
performing implementation.

4.4 Memory and Storage Usage
The HermitCore C version reserves a kernel stack of 8 KiB for each processor and this
stack size is sufficient. In contrast, the compiled Rust code uses more stack memory
and requires a much larger kernel stack to successfully boot up and launch the
HermitCore application. Currently, a per-processor stack of 32 KiB is allocated for
the kernel written in Rust. As this is no problem for an HPC operating system, the
reasons behind the higher stack usage have not been researched further. However,
this has also been observed independently during the development of another Rust
operating system in [49].

Due to the lack of the Buddy System, the current kernel heap memory usage is
also expected to be higher in the Rust version compared to the C version. However,
this has neither been a problem on the tested computer systems. If this becomes a
concern in the future, it can be easily improved by the introduction of the Buddy
System now that the Rust memory management components have stabilized.

The HermitCore C images of benchmark applications are 7 MiB in size on average.
Compared to that, the HermitCore Rust images for the same applications are only
around 3 MiB in size. Furthermore, around 800 KiB of that is taken by the PCI
ID database, which is not compiled into HermitCore C images. One reason for this
huge difference are the additional features of the C version, such as the network stack
(whose lwIP library can already consume up to 500 KiB in compiled code). On the
other hand, the Rust version relies on less statically allocated buffers. A notable
preallocated buffer of the C version is the 8 KiB kernel stack for 256 processors,
which sums up to 2 MiB in image size.

4.5 Code Maintainability
In order to get a metric for the required maintenance efforts of both HermitCore
versions, their Number of Files and Lines of Code have been compared using the
cloc1 tool.

1http://cloc.sourceforge.net

58

4.5 Code Maintainability

For a fair comparison, all applications, external libraries, and tools have been
removed from both source trees in advance. This also applies to all implemented
network drivers. Otherwise, the comparison would be highly in favor of the Hermit-
Core Rust version, because the C version currently implements more such drivers.
In the end, only source files written as part of the HermitCore project and required
for Unikernel mode are left.

Depending on the preferred style, a programmer may write curly braces at the
end of a line or always on a separate line. Because the first style is more dominant in
the Rust version while the latter one has often been used in the C implementation,
the cloc language definition file has been modified to exclude lines with only curly
braces from counting.

The results are shown in Table 4.4.

HermitCore Rust HermitCore C
Files Lines of Code Files Lines of Code

Rust 57 4157 0 0
C Source 8 667 37 5781
C Header 22 866 70 4987
Assembly 6 579 4 932
Sum 93 6269 111 11700

Table 4.4: Number of Files and Lines of Code of the HermitCore Rust and C versions

The total number of code lines of the current HermitCore Rust version is almost
half the number of the HermitCore C version. However, it must be taken into account
that the compared parts of the C version still implement features like Multi-Kernel
mode, Buddy System, and signals, which are not yet available in the Rust version.
Anyway, these numbers prove the hypothesis that the Rust rewrite resulted in a
smaller codebase. The advantages are an easier maintenance and less possible bugs.

One of the reasons is that C code often requires the same function to be defined in
a source and a header file. In addition to that, the programmer also has to consider
the order of declarations in a header file. On the other hand, each function only needs
to be defined and implemented once at an arbitrary location in a Rust source file.
Additionally, the implicit deallocation of memory and release of synchronization
objects when a variable goes out of scope reduces the number of required code
lines to implement the same logic in Rust. At the same time, this feature protects
against memory leaks and deadlocks. Finally, Rust’s design guards against common
programming mistakes as outlined in Section 2.2. All these aspects generally result
in less code and a possibly increased productivity when developing in Rust.

Apart from this, the lines of assembly code could be highly reduced in the Hermit-
Core Rust version due to a simpler implementation of task switching and interrupt
handlers. However, a notable number of C header files remain in the Rust tree.
These are still required to make HermitCore interfaces available to C applications.

59

4 Evaluation

It should be noted that these numbers are only suitable to roughly compare the
custom parts of both HermitCore codebases. From a security standpoint, all external
libraries, compiler-supplied functions, as well as the compiler itself also need to be
verified. This is expected to increase the total number of code lines significantly.

Finally, a fair comparison of the maintainability of both HermitCore versions also
has to consider the state of the underlying programming languages.

C has been the dominant language for writing operating system code over the
last two decades. It is internationally standardized since 1990 and new versions
of the standard emphasize backward compatibility to the original. Furthermore,
the standard is supported by many independent compiler platforms such as GCC,
LLVM, and Visual Studio. This guarantees a high quality and maturity of both the
standard’s documents and the widespread compilers. Additionally, every operating
system developer can be expected to know about the C language, so finding a
developer to extend an existing C operating system is relatively easy.

On the other hand, Rust is a new programming language that is constantly
evolving. While substantial changes require documentation and undergo a review
process2, there is no single document describing Rust detailed enough for implement-
ing an independent compiler. Therefore, all Rust applications currently depend on
the single Rust compiler and the community lead by Mozilla Research. Furthermore,
new versions of Rust only promise backward compatibility to stable features of
the Rust toolchain, but Rust operating systems usually require features of nightly
toolchain builds. Interfaces to these features are unstable and subject to change.
While Rust is currently introducing the concept of editions to let a project stick to
a specific language level, this also implies that using the latest features may require
syntactical code changes in the future [50]. Consequently, at the time of writing,
an operating system written in Rust is expected to require more maintenance work
when moving to a new compiler version compared to an operating system in C.
Additionally, Rust developers are currently scarce, so finding a developer to extend
a Rust operating system is considerably harder.

4.6 The Rust Toolchain
Version 1.22.0-nightly (17f56c549 2017-09-21) of the Rust toolchain that has
been used within this thesis has proven itself to be stable and reliable. During
the entire development, no Internal Compiler Errors (ICEs) have occurred and no
incorrectly compiled code has been determined. This applies to both unoptimized
debug builds as well as highly optimized release builds. It is also a consequence
of basing the Rust toolchain on the LLVM compiler framework, which is mature
enough to serve as the code generator for many popular operating systems (such as
Apple macOS or FreeBSD).

2https://github.com/rust-lang/rfcs

60

4.6 The Rust Toolchain

The integration into the popular GNU Debugger (GDB) also makes source-level
debugging of Rust code available to a variety of existing development environments.
However, in the beginning, GDB itself was incapable of debugging an x86-64 QEMU
virtual machine. For several years, this required a patch [18] and therefore a patched
GDB had to be used within this thesis. By the end of the thesis work, this problem
has finally been fixed officially3.

Nevertheless, the high dependence on features only available in nightly builds
of the compiler currently complicates operating system development in Rust. An
update to compiler version 1.26.0-nightly already requires some customizations
to the HermitCore Rust code to make it compile again.

3https://sourceware.org/git/gitweb.cgi?p=binutils-gdb.git;a=commit;
h=5cd63fda035d4ba949e6478406162c4673b3c9ef

61

5 Conclusion

The topic of this thesis was the evaluation of the Rust programming language
for operating system development and porting key components of the HermitCore
Unikernel. Within the 6 months of thesis work, it has been possible to port the
entire HermitCore operating system in Unikernel mode to Rust and document
the implementation. A new Memory Manager has been written, which leverages
a generic Free List structure and uniformly supports all page sizes of the x86-64
architecture. It has been stress-tested to ensure stability in all memory allocation
cases. Furthermore, the new hardware initialization code removes redundant checks
and improves several algorithms, like booting application processors or handling
multiple APIC modes. Implementing interrupt and exception handlers in Rust
reduces their overhead and also the amount of required assembly code. Finally,
the task scheduler written in Rust fixes concurrency bugs of the original, features a
cleaner design and requires less code for the same functionality.

All in all, the Rust language has proven to be a viable language for operating
system development and the resulting code is shorter, faster in some benchmarks,
and easier to maintain (cf. Chapter 4). The Rust codebase is also expected to be
less prone to bugs due to Rust’s design advantages outlined in Section 2.2.

In a future work, the Rust implementation of HermitCore should be extended by
the features currently missing compared to the original. This includes support for
the Multi-Kernel mode, Buddy System, signals, as well as an integration with the
lightweight uhyve hypervisor developed at the ACS. The same applies to the ARM
AArch64 port currently being developed.

Additionally, HermitCore could highly benefit from a basic parser for the ACPI
tables. This would enable it to use all logical processors of an SMT processor and
also make it compatible with computer systems lacking MultiProcessor Specification
1.4 compliance.

Regarding the code, the HermitCore Rust version has to use many unsafe blocks
for global variables. These variables are only set once or only accessed by the
single kernel thread on the boot processor. Such accesses are conceptually safe
and should not require an unsafe block, however the current Rust compiler cannot
detect the safety of these situations. This either needs to be addressed by the
Rust compiler developers or it can be solved by enclosing these variables in a
dummy synchronization primitive, which asserts that all accesses come from the
boot processor. The latter solution may however introduce an overhead that is
measurable in the micro-benchmarks of Section 4.3.

63

5 Conclusion

In any case, the Rust language needs improved support for classical arrays, which
are prevalent in low-level system development. It is currently impossible to write
code, which is generic over the size of an array. This limitation also affects the Rust
core library, because many of its standard traits are currently only implemented for
array sizes from 1 through 32.

Finally, a logical next step for a Rust version of HermitCore is adding support
for HermitCore applications written in Rust. This should be implemented without
relying on the newlib library written in C, as all other HermitCore applications
currently do.

64

Appendix

A Source Code
This appendix presents additional source code that has not been included in the
main chapters for the sake of clarity.

A.1 Universal APIC Register Access
The APIC initialization in Section 3.5.5 makes use of read and write functions to
access the APIC registers. These functions have been implemented in a universal
way to support both xAPIC and x2APIC mode. The corresponding Rust code is
presented in the following:

/// Translate the x2APIC MSR into an xAPIC memory address .
#[inline]
fn translate_x2apic_msr_to_xapic_address (x2apic_msr : u32)
-> usize {

unsafe {
LOCAL_APIC_ADDRESS +
((x2apic_msr as usize & 0xFF) << 4)

}
}

fn local_apic_read (x2apic_msr : u32) -> u32 {
if processor :: supports_x2apic () {

// x2APIC is simple , we can just read from the
// given MSR.
unsafe { rdmsr(x2apic_msr) as u32 }

} else {
unsafe { *(

translate_x2apic_msr_to_xapic_address (x2apic_msr)
as * const u32

) }
}

}

67

A Source Code

fn local_apic_write (x2apic_msr : u32 , value: u64) {
if processor :: supports_x2apic () {

// x2APIC is simple , we can just write the given
// value to the given MSR.
unsafe { wrmsr(x2apic_msr , value); }

} else {
if x2apic_msr == IA32_X2APIC_ICR {

// Instead of a single 64- bit ICR register , xAPIC
// has two 32- bit registers (ICR1 and ICR2).
// There is a gap between them and the destination
// field in ICR2 is also 8 bits instead of
// 32 bits.
let destination = ((value >> 8) & 0 xFF00_0000)

as u32;
let icr2 = unsafe { &mut *(

(LOCAL_APIC_ADDRESS + APIC_ICR2) as *mut u32
) };
*icr2 = destination ;

// The remaining data without the destination will
// now be written into ICR1.

}

// Write the value .
let value_ref = unsafe { &mut *(

translate_x2apic_msr_to_xapic_address (x2apic_msr)
as *mut u32

) };
* value_ref = value as u32;

if x2apic_msr == IA32_X2APIC_ICR {
// The ICR1 register in xAPIC mode also has a
// Delivery Status bit that must be checked .
// Wait until the CPU clears it.
// This bit does not exist in x2APIC mode
// (cf. Intel Vol. 3A, 10.12.9).
while (unsafe {

ptr :: read_volatile (value_ref)
} & APIC_ICR_DELIVERY_STATUS_PENDING) > 0 {

hint_core_should_pause ();
}

}
}

}

Listing A.1: Universal implementations for reading and writing APIC registers in
both APIC modes

68

B Sample Console Log
Sections 3.2, 3.5.1, and 3.8 have detailed the console output produced by the Hermit-
Core Rust version and emphasized its importance for associating a log to the used
computer system. In the following, a sample log from System 1 (cf. Section 4.1)
running the basic benchmark (cf. Section 4.3.1) with the message level set to INFO
is shown:

[LOADER] Started
[LOADER] Found Multiboot information at 0 x2000
[LOADER] Found an ELF module at 0 x114000
[LOADER] This is a HermitCore Application
[LOADER] File Size: 1171456 Bytes
[LOADER] Mem Size: 1173049 Bytes
[LOADER] Jumping to HermitCore Application Entry Point at 0 x800000
[0][INFO] Welcome to HermitCore 0.2.2 (bdf60d5c28aa0ee453b78a5eefa18ff04cbc1fd6)
[0][INFO]
[0][INFO] ===================== PHYSICAL MEMORY FREE LIST ======================
[0][INFO] 0 x00000000A00000 - 0 x0000007F780000
[0][INFO] 0 x00000100000000 - 0 x00000880000000
[0][INFO] ==
[0][INFO]
[0][INFO]
[0][INFO] ================== KERNEL VIRTUAL MEMORY FREE LIST ===================
[0][INFO] 0 x00000000A00000 - 0 x00000100000000
[0][INFO] ==
[0][INFO]
[0][INFO]
[0][INFO] ========================== CPU INFORMATION ===========================
[0][INFO] Model : Intel (R) Xeon(R) CPU L5630 @ 2.13 GHz
[0][INFO] Frequency : 2130 MHz (from CPUID Brand String)
[0][INFO] SpeedStep Technology : Available , enabled with maximum P- State 18 (

Turbo Mode), disabled Performance / Energy Bias
[0][INFO] Features : MMX SSE SSE2 SSE3 SSSE3 SSE4 .1 SSE4 .2 EIST AESNI

MCE FXSR VMX RDTSCP MWAIT CLFLUSH DCA
[0][INFO] Physical Address Width : 40 bits
[0][INFO] Linear Address Width : 48 bits
[0][INFO] Supports 1GiB Pages : Yes
[0][INFO] ==
[0][INFO]
[0][INFO]
[0][INFO] ======================== PCI BUS INFORMATION =========================
[0][INFO] 00:00 Host bridge [0600]: Intel Corporation 5520 I/O Hub to ESI Port

[8086:3406]
[0][INFO] 00:01 PCI bridge [0604]: Intel Corporation 5520/5500/ X58 I/O Hub PCI

Express Root Port 1 [8086:3408]
[0][INFO] 00:03 PCI bridge [0604]: Intel Corporation 5520/5500/ X58 I/O Hub PCI

Express Root Port 3 [8086:340 A]
[0][INFO] 00:05 PCI bridge [0604]: Intel Corporation 5520/ X58 I/O Hub PCI Express

Root Port 5 [8086:340 C]
[0][INFO] 00:07 PCI bridge [0604]: Intel Corporation 5520/5500/ X58 I/O Hub PCI

Express Root Port 7 [8086:340 E]
[0][INFO] 00:09 PCI bridge [0604]: Intel Corporation 7500/5520/5500/ X58 I/O Hub PCI

Express Root Port 9 [8086:3410]

69

B Sample Console Log

[0][INFO] 00:13 PIC [0800]: Intel Corporation 7500/5520/5500/ X58 I/O Hub I/ OxAPIC
Interrupt Controller [8086:342 D]

[0][INFO] 00:14 PIC [0800]: Intel Corporation 7500/5520/5500/ X58 I/O Hub System
Management Registers [8086:342 E]

[0][INFO] 00:16 System peripheral [0880]: Intel Corporation 5520/5500/ X58 Chipset
QuickData Technology Device [8086:3430] , IRQ 10

[0][INFO] 00:1A USB controller [0 C03]: Intel Corporation 82801 JI (ICH10 Family) USB
UHCI Controller #4 [8086:3 A37], IRQ 10

[0][INFO] 00:1D USB controller [0 C03]: Intel Corporation 82801 JI (ICH10 Family) USB
UHCI Controller #1 [8086:3 A34], IRQ 6

[0][INFO] 00:1E PCI bridge [0604]: Intel Corporation 82801 PCI Bridge [8086:244 E]
[0][INFO] 00:1F ISA bridge [0601]: Intel Corporation 82801 JIR (ICH10R) LPC

Interface Controller [8086:3 A16]
[0][INFO] 01:00 Ethernet controller [0200]: Intel Corporation 82576 Gigabit Network

Connection [8086:10 C9], IRQ 10
[0][INFO] 03:00 USB controller [0 C03]: VIA Technologies , Inc. VL805 USB 3.0 Host

Controller [1106:3483] , IRQ 10
[0][INFO] 04:00 PCI bridge [0604]: PLX Technology , Inc. PEX8112 x1 Lane PCI Express

-to -PCI Bridge [10 B5 :8112] , IRQ 10
[0][INFO] 06:00 VGA compatible controller [0300]: NVIDIA Corporation G98 [GeForce

9300 GE] [10 DE :06 E0], IRQ 10
[0][INFO] 08:04 VGA compatible controller [0300]: Matrox Electronics Systems Ltd.

MGA G200eW WPCM450 [102B:0532] , IRQ 10
[0][INFO] ==
[0][INFO]
[0][INFO]
[0][INFO] ===================== MULTIPROCESSOR INFORMATION =====================
[0][INFO] APIC in use: xAPIC
[0][INFO] Initialized CPUs: 8
[0][INFO] ==
[0][INFO]
[0][INFO] Creating task 8
Determine systems performance
=============================
Average time for getpid : 17 cycles , pid 8
Average time for sched_yield : 218 cycles
Average time for malloc : 764 cycles
Average time for the first page access : 27 cycles
[0][INFO] Finishing task 8 with exit code 0
[0][INFO] Cleaning up task 8
[0][INFO] Shutting down system

Listing B.1: Console Log of System 1 running the basic benchmark

70

List of Figures
2.1 Addressing scheme for memory mapped to a 4 KiB Page in the x86-64

architecture . 8
a Translating a Virtual Memory address to a Physical Memory

address . 8
b Format of a Page Table Entry 8

3.1 Structure of the Paging implementation in Rust 31
a Simplified PageTable and PageTableEntry structures with

implemented PageTableMethods trait 31
b Empty enums with implemented traits as type parameters for

the paging functions . 31
3.2 Possible Free List cases when deallocating memory. 34

a Extending an existing node to the left. 34
b Extending an existing node to the right. 34
c Reuniting two nodes into a single large one when a new node

completely fills the gap. 34
d Inserting a new node when it cannot extend any existing one. 34

3.3 Virtual Memory Layout of the HermitCore Rust implementation . . . 35
3.4 Boot process of the HermitCore Rust version including all hardware

initialization steps . 47

71

List of Tables
4.1 Systems used for testing HermitCore 53
4.2 Results of the basic micro-benchmarks on System 1 under HermitCore

and System 5 under Linux (in processor cycles) 56
4.3 Results of the Hourglass benchmark on System 1 under HermitCore

and System 5 under Linux (in processor cycles) 57
4.4 Number of Files and Lines of Code of the HermitCore Rust and C

versions . 59

73

List of Listings

2.1 Exemplary destructuring of a compound type in a match block 19

3.1 Declaration and fields of the PERCORE structure 48

A.1 Universal implementations for reading and writing APIC registers in
both APIC modes . 67

B.1 Console Log of System 1 running the basic benchmark 69

75

List of Abbreviations

ABI Application Binary Interface
ACPI Advanced Configuration and Power Interface
ACS Institute for Automation of Complex Power Systems
AMD Advanced Micro Devices
AML ACPI Machine Language
APIC Advanced Programmable Interrupt Controller
BIOS Basic Input/Output System
CISC Complex Instruction Set Computer
CR Control Register
DMA Direct Memory Access
EIST Enhanced Intel SpeedStep Technology
FFI Foreign Function Interface
FPU Floating-Point Unit
GCC GNU Compiler Collection
GDB GNU Debugger
GDT Global Descriptor Table
HPC High-Performance Computing
ICE Internal Compiler Error
IDT Interrupt Descriptor Table
IPI Inter-Processor Interrupt
IR Intermediate Representation
LfBS Lehrstuhl für Betriebssysteme
lwIP Lightweight IP
MMU Memory Management Unit
MPI Message Passing Interface
MSB Most Significant Bit
MSR Machine-Specific Register
NUCA Non-Uniform Cache Architecture
NUMA Non-Uniform Memory Access
NX No-eXecute
PCI Peripheral Component Interconnect
PD Page Directory
PDPT Page Directory Pointer Table
PIC Programmable Interrupt Controller
PIT Programmable Interval Timer
PML4 Page Map Level 4

77

List of Abbreviations

POSIX Portable Operating System Interface
PT Page Table
PTE POSIX Threads for Embedded systems
RAII Resource Acquisition Is Initialization
RAM Random Access Memory
RTOS Real-Time Operating System
SIMD Single Instruction, Multiple Data
SMM System Management Mode
SMP Symmetric Multiprocessing
SMT Simultaneous Multithreading
TLB Translation Lookaside Buffer
TMP Template Metaprogramming
TSC Time Stamp Counter
TSS Task State Segment

78

Bibliography
[1] Stefan Lankes, Simon Pickartz, and Jens Breitbart. “A Low Noise Unikernel

for Extrem-Scale Systems”. In: 30th International Conference on Architecture
of Computing Systems – ARCS 2017 (2017), pp. 73–84.

[2] Dan Tsafrir et al. “System Noise, OS Clock Ticks, and Fine-Grained Par-
allel Applications”. In: ICS ’05 Proceedings of the 19th annual international
conference on Supercomputing (2005), pp. 303–312.

[3] Anil Madhavapeddy et al. “Unikernels: Library Operating Systems for the
Cloud”. In: ASPLOS ’13 Proceedings of the 18th international conference on
Architectural support for programming languages and operating systems (2013),
pp. 461–472.

[4] Graydon Hoare. Project Servo - Technology from the past come to save the
future from itself. 2010. url: http://venge.net/graydon/talks/intro-
talk-2.pdf.

[5] Rust project developers. Frequently Asked Questions - The Rust Programming
Language. 2018. url: https://www.rust-lang.org/en-US/faq.html.

[6] Rust project developers. Data Races and Race Conditions - The Rustonomi-
con. 2018. url: https://doc.rust-lang.org/nomicon/races.html.

[7] Yves Younan. 25 Years of Vulnerabilities: 1988-2012. 2012. url: https://
courses.cs.washington.edu/courses/cse484/14au/reading/25-years-
vulnerabilities.pdf.

[8] Abel Avram and Graydon Hoare. Interview on Rust, a Systems Programming
Language Developed by Mozilla. 2012. url: https://www.infoq.com/news/
2012/08/Interview-Rust.

[9] Rust project developers. Appendix: Influences - The Rust Reference. 2018.
url: https://doc.rust-lang.org/reference/influences.html.

[10] TOP500.org. Operating system Family / Linux - TOP500 Supercomputer Sites.
2018. url: https://www.top500.org/statistics/details/osfam/1.

[11] TOP500.org. Highlights - November 2017 - TOP500 Supercomputer Sites.
2017. url: https://www.top500.org/lists/2017/11/highlights.

[12] Kevin McGrath and Dave Christie. “The AMD x86-64 Architecture - Extend-
ing the x86 to 64 bits”. In: Hot Chips 14 (2002).

[13] P.K. Nizar. “Advanced Programmable Interrupt Controller (APIC) for MP
and 32-bit Operating Systems”. In: Hot Chips 04 (1992).

79

http://venge.net/graydon/talks/intro-talk-2.pdf
http://venge.net/graydon/talks/intro-talk-2.pdf
https://www.rust-lang.org/en-US/faq.html
https://doc.rust-lang.org/nomicon/races.html
https://courses.cs.washington.edu/courses/cse484/14au/reading/25-years-vulnerabilities.pdf
https://courses.cs.washington.edu/courses/cse484/14au/reading/25-years-vulnerabilities.pdf
https://courses.cs.washington.edu/courses/cse484/14au/reading/25-years-vulnerabilities.pdf
https://www.infoq.com/news/2012/08/Interview-Rust
https://www.infoq.com/news/2012/08/Interview-Rust
https://doc.rust-lang.org/reference/influences.html
https://www.top500.org/statistics/details/osfam/1
https://www.top500.org/lists/2017/11/highlights

Bibliography

[14] Hans-Peter Messmer and Klaus Dembowski. PC Hardwarebuch - Aufbau, Funk-
tionsweise, Programmierung. Addison-Wesley, 2003. isbn: 9783827320148.

[15] Intel Corporation. MultiProcessor Specification 1.4. 1997. url: https://web.
archive.org/web/20121002210153/http://download.intel.com/design/
archives/processors/pro/docs/24201606.pdf.

[16] Unified EFI Forum, Inc. Advanced Configuration and Power Interface (ACPI)
Specification - Version 6.2 Errata A. 2017. url: http://www.uefi.org/
sites/default/files/resources/ACPI%206_2_A_Sept29.pdf.

[17] Intel Corporation. 5-Level Paging and 5-Level EPT White Paper. 2017. url:
https://software.intel.com/sites/default/files/managed/2b/80/5-
level_paging_white_paper.pdf.

[18] Steffen Vogel. “Eine generische Speicherverwaltung mit Hilfe von Seitentabellen
für ein minimalistisches Betriebssystem”. Bachelor’s Thesis. RWTH Aachen
University, 2014.

[19] Kenneth C. Knowlton. “A fast storage allocator”. In: Communications of the
ACM 8.10 (1965), pp. 623–624.

[20] Peter Bright. Better on the inside: under the hood of Windows 8. 2012. url:
https://arstechnica.com/information-technology/2012/10/better-
on-the-inside-under-the-hood-of-windows-8/2/.

[21] Jonathan Corbet. (Nearly) full tickless operation in 3.10. 2013. url: https:
//lwn.net/Articles/549580/.

[22] TIOBE software BV. TIOBE Index - February 2018. 2018. url: https://
www.tiobe.com/tiobe-index/.

[23] Dennis M. Ritchie. “The development of the C language”. In: ACM Sigplan
Notices 28.3 (1993), pp. 201–208.

[24] Bjarne Stroustrup. “A History of C++: 1979-1991”. In: ACM Sigplan Notices
28.3 (1993), pp. 271–297.

[25] Peter Seibel. Coders at Work: Reflections on the Craft of Programming. Apress,
2009. isbn: 9781430219484.

[26] Graydon Hoare. [rust-dev] stage1/rustc builds. 2011. url: https://mail.
mozilla.org/pipermail/rust-dev/2011-April/000330.html.

[27] Michael Woerister. rust-gdb. rust-lldb. 2015. url: https://michaelwoerister.
github.io/2015/03/27/rust-xxdb.html.

[28] David A. Wheeler. The Apple goto fail vulnerability: lessons learned. 2017.
url: https://www.dwheeler.com/essays/apple-goto-fail.html.

[29] Ed Felten. The Linux Backdoor Attempt of 2003. 2013. url: https://freedom-
to-tinker.com/2013/10/09/the-linux-backdoor-attempt-of-2003.

[30] Rust project developers. Functions - The Rust Programming Language. 2018.
url: https://doc.rust-lang.org/book/first-edition/functions.html.

80

https://web.archive.org/web/20121002210153/http://download.intel.com/design/archives/processors/pro/docs/24201606.pdf
https://web.archive.org/web/20121002210153/http://download.intel.com/design/archives/processors/pro/docs/24201606.pdf
https://web.archive.org/web/20121002210153/http://download.intel.com/design/archives/processors/pro/docs/24201606.pdf
http://www.uefi.org/sites/default/files/resources/ACPI%206_2_A_Sept29.pdf
http://www.uefi.org/sites/default/files/resources/ACPI%206_2_A_Sept29.pdf
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://arstechnica.com/information-technology/2012/10/better-on-the-inside-under-the-hood-of-windows-8/2/
https://arstechnica.com/information-technology/2012/10/better-on-the-inside-under-the-hood-of-windows-8/2/
https://lwn.net/Articles/549580/
https://lwn.net/Articles/549580/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://mail.mozilla.org/pipermail/rust-dev/2011-April/000330.html
https://mail.mozilla.org/pipermail/rust-dev/2011-April/000330.html
https://michaelwoerister.github.io/2015/03/27/rust-xxdb.html
https://michaelwoerister.github.io/2015/03/27/rust-xxdb.html
https://www.dwheeler.com/essays/apple-goto-fail.html
https://freedom-to-tinker.com/2013/10/09/the-linux-backdoor-attempt-of-2003
https://freedom-to-tinker.com/2013/10/09/the-linux-backdoor-attempt-of-2003
https://doc.rust-lang.org/book/first-edition/functions.html

[31] Rust project developers. Rust RFC 1210 - Specialization. 2018. url: https://
github.com/rust-lang/rfcs/blob/master/text/1210-impl-specialization.
md.

[32] Paul Ducklin. Anatomy of a security hole – the break that broke sudo. 2012.
url: https://nakedsecurity.sophos.com/2012/05/21/anatomy-of-a-
security-hole-the-break-that-broke-sudo.

[33] Rust project developers. Patterns - The Rust Programming Language. 2018.
url: https://doc.rust-lang.org/1.6.0/book/patterns.html.

[34] Rust project developers. What is Ownership? - The Rust Programming Lan-
guage, Second Edition. 2018. url: https://doc.rust-lang.org/book/
second-edition/ch04-01-what-is-ownership.html.

[35] Pete Isensee. C++ Optimizations You Can Do "As You Go". 1998. url: http:
//www.tantalon.com/pete/cppopt/asyougo.htm.

[36] Rust project developers. References and Borrowing - The Rust Programming
Language, Second Edition. 2018. url: https://doc.rust-lang.org/book/
second-edition/ch04-02-references-and-borrowing.html.

[37] Rust project developers. Foreign Function Interface - The Rustonomicon. 2018.
url: https://doc.rust-lang.org/nomicon/ffi.html.

[38] Philipp Oppermann. Page Tables - Writing an OS in Rust. 2015. url: https:
//os.phil-opp.com/page-tables.

[39] Intel Corporation. Intel® 64 and IA-32 architectures software developer’s man-
ual combined volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4. 2018. url:
https://software.intel.com/sites/default/files/managed/39/c5/
325462-sdm-vol-1-2abcd-3abcd.pdf.

[40] OSDev.org Authors. 8259 PIC. 2018. url: https://wiki.osdev.org/8259_
PIC.

[41] InstLatX64 Authors. x86, x64 Instruction Latency, Memory Latency and CPUID
dumps. 2018. url: http://instlatx64.atw.hu.

[42] OSDev.org Authors. Symmetric Multiprocessing. 2018. url: https://wiki.
osdev.org/Symmetric_Multiprocessing.

[43] Embedded System Software Group of Technische Universität Dortmund. Klasse
CPU. 2018. url: https://ess.cs.tu-dortmund.de/DE/Teaching/WS2017/
BSB/Aufgaben/aufgabe4/klassen/cpu.html.

[44] United Computer Wizards. The PCI ID Repository. 2018. url: http://pci-
ids.ucw.cz.

[45] Anthony Williams. Locks, Mutexes, and Semaphores: Types of Synchroniza-
tion Objects. 2014. url: https://www.justsoftwaresolutions.co.uk/
threading/locks-mutexes-semaphores.html.

81

https://github.com/rust-lang/rfcs/blob/master/text/1210-impl-specialization.md
https://github.com/rust-lang/rfcs/blob/master/text/1210-impl-specialization.md
https://github.com/rust-lang/rfcs/blob/master/text/1210-impl-specialization.md
https://nakedsecurity.sophos.com/2012/05/21/anatomy-of-a-security-hole-the-break-that-broke-sudo
https://nakedsecurity.sophos.com/2012/05/21/anatomy-of-a-security-hole-the-break-that-broke-sudo
https://doc.rust-lang.org/1.6.0/book/patterns.html
https://doc.rust-lang.org/book/second-edition/ch04-01-what-is-ownership.html
https://doc.rust-lang.org/book/second-edition/ch04-01-what-is-ownership.html
http://www.tantalon.com/pete/cppopt/asyougo.htm
http://www.tantalon.com/pete/cppopt/asyougo.htm
https://doc.rust-lang.org/book/second-edition/ch04-02-references-and-borrowing.html
https://doc.rust-lang.org/book/second-edition/ch04-02-references-and-borrowing.html
https://doc.rust-lang.org/nomicon/ffi.html
https://os.phil-opp.com/page-tables
https://os.phil-opp.com/page-tables
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://wiki.osdev.org/8259_PIC
https://wiki.osdev.org/8259_PIC
http://instlatx64.atw.hu
https://wiki.osdev.org/Symmetric_Multiprocessing
https://wiki.osdev.org/Symmetric_Multiprocessing
https://ess.cs.tu-dortmund.de/DE/Teaching/WS2017/BSB/Aufgaben/aufgabe4/klassen/cpu.html
https://ess.cs.tu-dortmund.de/DE/Teaching/WS2017/BSB/Aufgaben/aufgabe4/klassen/cpu.html
http://pci-ids.ucw.cz
http://pci-ids.ucw.cz
https://www.justsoftwaresolutions.co.uk/threading/locks-mutexes-semaphores.html
https://www.justsoftwaresolutions.co.uk/threading/locks-mutexes-semaphores.html

Bibliography

[46] Timo Richter. Hyper-Threading oder Simultaneous Multithreading. 2002. url:
http://www.weblearn.hs-bremen.de/risse/RST/WS02/hyperthreading.
pdf.

[47] John Regehr. “Inferring Scheduling Behavior with Hourglass”. In: Proceedings
of the USENIX 2002 Annual Technical Conference, Freenix Track (2002),
pp. 143–156.

[48] Insyde Software. BIOS Customizations for Optimized RTOS Performance.
2013. url: https://de.slideshare.net/insydesoftware/bios-customizations-
for-optimized-rtos-performance.

[49] Philipp Oppermann. Handling Exceptions - Writing an OS in Rust. 2017. url:
https://os.phil-opp.com/handling-exceptions.

[50] Rust project developers. Rust’s 2018 roadmap. 2018. url: https://blog.
rust-lang.org/2018/03/12/roadmap.html.

82

http://www.weblearn.hs-bremen.de/risse/RST/WS02/hyperthreading.pdf
http://www.weblearn.hs-bremen.de/risse/RST/WS02/hyperthreading.pdf
https://de.slideshare.net/insydesoftware/bios-customizations-for-optimized-rtos-performance
https://de.slideshare.net/insydesoftware/bios-customizations-for-optimized-rtos-performance
https://os.phil-opp.com/handling-exceptions
https://blog.rust-lang.org/2018/03/12/roadmap.html
https://blog.rust-lang.org/2018/03/12/roadmap.html

	Abstract
	Table of Contents
	1 Introduction
	2 Basics
	2.1 The HermitCore Operating System
	2.1.1 Architecture Support
	2.1.2 Memory Manager
	2.1.3 Scheduler
	2.1.4 Timers
	2.1.5 Network Support
	2.1.6 Third-Party Components

	2.2 The Rust Programming Language
	2.2.1 The Rust Toolchain
	2.2.2 Basic Safety Features
	2.2.3 Expressions and Statements
	2.2.4 Arrays, Slices, and Strings
	2.2.5 Generic Programming
	2.2.6 Pattern Matching
	2.2.7 Ownership, References, and Borrowing
	2.2.8 Foreign Function Interfaces
	2.2.9 Crates for Operating System Development

	3 Implementation
	3.1 Goals
	3.2 Console Output
	3.3 Build System
	3.4 Memory Manager
	3.4.1 Paging
	3.4.2 Physical and Virtual Memory Management
	3.4.3 Heap Allocator
	3.4.4 Node Pool

	3.5 Hardware Initialization
	3.5.1 Processor Initialization
	3.5.2 Global Descriptor Table
	3.5.3 Interrupts and Exceptions
	3.5.4 Processor Frequency Detection
	3.5.5 APIC and SMP
	3.5.6 Boot Process Diagram

	3.6 Per-Processor Variables
	3.7 Scheduler
	3.8 Features Not Covered

	4 Evaluation
	4.1 Test Systems
	4.2 Hardware Compatibility
	4.3 Benchmarks
	4.3.1 Basic Micro-Benchmarks
	4.3.2 Hourglass Benchmark

	4.4 Memory and Storage Usage
	4.5 Code Maintainability
	4.6 The Rust Toolchain

	5 Conclusion
	A Source Code
	A.1 Universal APIC Register Access

	B Sample Console Log
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	Bibliography

