
Evaluation of Rust for Operating System Development
and Porting Key Components of the HermitCore Unikernel
Master’s Thesis Presentation

Colin Finck

Agenda

Motivation

The Rust Programming Language
Some Rust Features

The HermitCore Operating System

Thesis Work

Evaluation

Conclusion

2 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Motivation

#include <stdio .h>
#include <stdlib .h>
#include <sys/stat.h>

int main(int argc , char* argv []) {
char *buf , * filename ;
FILE *fp;
size_t bytes , len;
struct stat st;

switch (argc) {
case 1:

printf ("Too few arguments !\n");
return 1;

case 2:
filename = argv[argc];
stat(filename , &st);
len = st. st_size ;

buf = (char *) malloc (len);
if (! buf)

printf (" malloc failed !\n", len);
return 1;

fp = fopen (filename , "rb");
bytes = fread (buf , 1, len , fp);
if (bytes = st. st_size)

printf ("%s", buf);
else

printf (" fread failed !\n");

case 3:
printf ("Too many arguments !\n");
return 1;

}

return 0;
}

3 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Motivation

#include <stdio .h>
#include <stdlib .h>
#include <sys/stat.h>

int main(int argc , char* argv []) {
char *buf , * filename ;
FILE *fp;
size_t bytes , len;
struct stat st;

switch (argc) {
case 1:

printf ("Too few arguments !\n");
return 1;

case 2:
filename = argv[argc];
stat(filename , &st);
len = st. st_size ;

buf = (char *) malloc (len);
if (! buf)

printf (" malloc failed !\n", len);
return 1;

fp = fopen (filename , "rb");
bytes = fread (buf , 1, len , fp);
if (bytes = st. st_size)

printf ("%s", buf);
else

printf (" fread failed !\n");

case 3:
printf ("Too many arguments !\n");
return 1;

}

return 0;
}

3 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Motivation

#include <stdio .h>
#include <stdlib .h>
#include <sys/stat.h>

int main(int argc , char* argv []) {
char *buf , * filename ;
FILE *fp;
size_t bytes , len;
struct stat st;

switch (argc) {
case 1:

printf ("Too few arguments !\n");
return 1;

case 2:
filename = argv [argc];
stat (filename , &st);
len = st. st_size ;

buf = (char *) malloc (len);
if (! buf)

printf (" malloc failed !\n", len);
return 1;

fp = fopen (filename , "rb");
bytes = fread (buf , 1, len , fp);
if (bytes = st. st_size)

printf ("%s", buf);
else

printf (" fread failed !\n");

case 3:
printf ("Too many arguments !\n");
return 1;

}

return 0;
}

3 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Motivation

#include <stdio .h>
#include <stdlib .h>
#include <sys/stat.h>

int main(int argc , char* argv []) {
char *buf , * filename ;
FILE *fp;
size_t bytes , len;
struct stat st;

switch (argc) {
case 1:

printf ("Too few arguments !\n");
return 1;

case 2:
filename = argv [argc];
stat (filename , &st);
len = st. st_size ;

buf = (char *) malloc (len);
if (! buf)

printf (" malloc failed !\n", len);
return 1;

fp = fopen (filename , "rb");
bytes = fread (buf , 1, len , fp);
if (bytes = st. st_size)

printf ("%s", buf);
else

printf (" fread failed !\n");

case 3:
printf ("Too many arguments !\n");
return 1;

}

return 0;
}

out-of-bounds access

3 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Motivation

#include <stdio .h>
#include <stdlib .h>
#include <sys/stat.h>

int main(int argc , char* argv []) {
char *buf , * filename ;
FILE *fp;
size_t bytes , len;
struct stat st;

switch (argc) {
case 1:

printf ("Too few arguments !\n");
return 1;

case 2:
filename = argv [argc];
stat (filename , &st);
len = st. st_size ;

buf = (char *) malloc (len);
if (! buf)

printf (" malloc failed !\n", len);
return 1;

fp = fopen (filename , "rb");
bytes = fread (buf , 1, len , fp);
if (bytes = st. st_size)

printf ("%s", buf);
else

printf (" fread failed !\n");

case 3:
printf ("Too many arguments !\n");
return 1;

}

return 0;
}

unchecked return values

3 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Motivation

#include <stdio .h>
#include <stdlib .h>
#include <sys/stat.h>

int main(int argc , char* argv []) {
char *buf , * filename ;
FILE *fp;
size_t bytes , len;
struct stat st;

switch (argc) {
case 1:

printf ("Too few arguments !\n");
return 1;

case 2:
filename = argv [argc];
stat (filename , &st);
len = st. st_size ;

buf = (char *) malloc (len);
if (! buf)

printf (" malloc failed !\n", len);
return 1;

fp = fopen (filename , "rb");
bytes = fread (buf , 1, len , fp);
if (bytes = st. st_size)

printf ("%s", buf);
else

printf (" fread failed !\n");

case 3:
printf ("Too many arguments !\n");
return 1;

}

return 0;
}

forgotten braces

3 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Motivation

#include <stdio .h>
#include <stdlib .h>
#include <sys/stat.h>

int main(int argc , char* argv []) {
char *buf , * filename ;
FILE *fp;
size_t bytes , len;
struct stat st;

switch (argc) {
case 1:

printf ("Too few arguments !\n");
return 1;

case 2:
filename = argv [argc];
stat (filename , &st);
len = st. st_size ;

buf = (char *) malloc (len);
if (! buf)

printf (" malloc failed !\n", len);
return 1;

fp = fopen (filename , "rb");
bytes = fread (buf , 1, len , fp);
if (bytes = st. st_size)

printf ("%s", buf);
else

printf (" fread failed !\n");

case 3:
printf ("Too many arguments !\n");
return 1;

}

return 0;
}

assignment = instead of
equality comparison ==

3 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Motivation

#include <stdio .h>
#include <stdlib .h>
#include <sys/stat.h>

int main(int argc , char* argv []) {
char *buf , * filename ;
FILE *fp;
size_t bytes , len;
struct stat st;

switch (argc) {
case 1:

printf ("Too few arguments !\n");
return 1;

case 2:
filename = argv [argc];
stat (filename , &st);
len = st. st_size ;

buf = (char *) malloc (len);
if (! buf)

printf (" malloc failed !\n", len);
return 1;

fp = fopen (filename , "rb");
bytes = fread (buf , 1, len , fp);
if (bytes = st. st_size)

printf ("%s", buf);
else

printf (" fread failed !\n");

case 3:
printf ("Too many arguments !\n");
return 1;

}

return 0;
}

buffer overflow due to
missing NUL termination

3 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Motivation

29 Lines of Code, with serious bugs in at least 11
Assignment = instead of equality comparison ==
Buffer overflows
File descriptor leak
Forgotten braces in multi-line if
Forgotten break in a switch statement
Forgotten NUL-termination of a string
Incorrect argument for format string
Memory leak
Unchecked cases in a switch statement
Unchecked return values

But compiles warning-free with the default settings of many C compilers!

4 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Motivation

29 Lines of Code, with serious bugs in at least 11
Assignment = instead of equality comparison ==
Buffer overflows
File descriptor leak
Forgotten braces in multi-line if
Forgotten break in a switch statement
Forgotten NUL-termination of a string
Incorrect argument for format string
Memory leak
Unchecked cases in a switch statement
Unchecked return values

But compiles warning-free with the default settings of many C compilers!

4 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Motivation

Not an unrealistic scenario, and highly security-relevant!

David Wheeler, The Apple goto fail vulnerability
Forgotten braces in multi-line if

Ed Felten, The Linux Backdoor Attempt of 2003
Assignment = instead of equality comparison ==

Paul Ducklin, The break that broke sudo
Forgotten break in a switch statement

Yves Younan, 25 Years of Vulnerabilities
Buffer overflows and format string problems among the top security issues

5 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Motivation

Is a 46-year-old programming language still the way to go?

6 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

The Rust Programming Language

Mozilla-sponsored programming language developed since 2006,
with emphasis on safety and concurrency

Competitor to C and C++: Compiled systems language with
deterministic memory management

Implements mature features of C and C++, but also from Haskell,
OCaml, SML, etc.
(no backward compatibility necessary)

Makes all of the aforementioned code bugs impossible, and
many others!

7 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

The Rust Programming Language

Mozilla-sponsored programming language developed since 2006,
with emphasis on safety and concurrency

Competitor to C and C++: Compiled systems language with
deterministic memory management

Implements mature features of C and C++, but also from Haskell,
OCaml, SML, etc.
(no backward compatibility necessary)

Makes all of the aforementioned code bugs impossible, and
many others!

7 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Some Rust Features

The str type

Combines a buffer and a length
Guaranteed UTF-8 character encoding
Bounds-checked at runtime
Used consistently throughout all of Rust

8 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Some Rust Features

Ownership

1. Each value in Rust has a variable that’s called its owner.
2. There can only be one owner at a time.
3. When the owner goes out of scope, the value will be dropped.

Example

let vec1: Vec<i32> = vec![42, 1337];

fn process_vector(input_vec: Vec<i32>)

9 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Some Rust Features

Ownership

1. Each value in Rust has a variable that’s called its owner.
2. There can only be one owner at a time.
3. When the owner goes out of scope, the value will be dropped.

Example

let vec1: Vec<i32> = vec![42, 1337];

fn process_vector(input_vec: Vec<i32>)

Vec<i32>

42
1337

vec1

9 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Some Rust Features

Ownership

1. Each value in Rust has a variable that’s called its owner.
2. There can only be one owner at a time.
3. When the owner goes out of scope, the value will be dropped.

Example

let vec1: Vec<i32> = vec![42, 1337];

fn process_vector(input_vec: Vec<i32>)

Vec<i32>

42
1337

vec1

9 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Some Rust Features

Ownership

1. Each value in Rust has a variable that’s called its owner.
2. There can only be one owner at a time.
3. When the owner goes out of scope, the value will be dropped.

Example

let vec1: Vec<i32> = vec![42, 1337];

fn process_vector(input_vec: Vec<i32>)

Vec<i32>

42
1337

vec1

input_vec

9 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Some Rust Features

References and Borrowing

fn process_vector(input_vec: &Vec<i32>)
Variable is borrowed immutable
No transfer of ownership
Multiple immutable borrows possible

Vec<i32>

42
1337

vec1

input_vec

read-only

fn process_vector(input_vec: &mut Vec<i32>)
Variable is borrowed mutable
No transfer of ownership
Only one mutable borrow at the same time

Vec<i32>

42
1337

vec1

input_vec

writable

10 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Some Rust Features

References and Borrowing
fn process_vector(input_vec: &Vec<i32>)

Variable is borrowed immutable
No transfer of ownership
Multiple immutable borrows possible

Vec<i32>

42
1337

vec1

input_vec

read-only

fn process_vector(input_vec: &mut Vec<i32>)
Variable is borrowed mutable
No transfer of ownership
Only one mutable borrow at the same time

Vec<i32>

42
1337

vec1

input_vec

writable

10 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Some Rust Features

References and Borrowing
fn process_vector(input_vec: &Vec<i32>)

Variable is borrowed immutable
No transfer of ownership
Multiple immutable borrows possible

Vec<i32>

42
1337

vec1

input_vec

read-only

fn process_vector(input_vec: &mut Vec<i32>)
Variable is borrowed mutable
No transfer of ownership
Only one mutable borrow at the same time

Vec<i32>

42
1337

vec1

input_vec

writable

10 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

The HermitCore Operating System

Novel operating system kernel developed at the ACS since 2015

Low system noise and predictable runtime behavior for HPC
applications

Supports GCC (C, C++, Fortran, Go), POSIX, OpenMP, and
Pthreads

Many existing HPC applications can be easily ported

Single-address-space library operating system (Unikernel)

11 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Thesis Work

Goals
Porting individual components of HermitCore to Rust while preserving C compatibility

Memory Manager
x86-64 Hardware Initialization (with APIC and SMP)
Scheduler

Prefer safe and maintainable code over performance during development
Clean remains of 32-bit x86 specific code in 64-bit x86-64 implementation

Result
Entire Unikernel mode of HermitCore could be ported within this thesis

12 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Thesis Work

Goals
Porting individual components of HermitCore to Rust while preserving C compatibility

Memory Manager
x86-64 Hardware Initialization (with APIC and SMP)
Scheduler

Prefer safe and maintainable code over performance during development
Clean remains of 32-bit x86 specific code in 64-bit x86-64 implementation

Result
Entire Unikernel mode of HermitCore could be ported within this thesis

12 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Thesis Work

By-Products
Generic Doubly-Linked List Implementation

Not part of the standard Rust library
Tricky due to two mutable references per node

Generic Free List Implementation
Sorted list for managing free blocks of memory
Used for both Physical and Virtual Memory
Manager
Based on Doubly-Linked List

13 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Thesis Work

By-Products
Generic Doubly-Linked List Implementation

Not part of the standard Rust library
Tricky due to two mutable references per node

Generic Free List Implementation
Sorted list for managing free blocks of memory
Used for both Physical and Virtual Memory
Manager
Based on Doubly-Linked List

13 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Thesis Work

By-Products
Generic Doubly-Linked List Implementation

Not part of the standard Rust library
Tricky due to two mutable references per node

Generic Free List Implementation
Sorted list for managing free blocks of memory
Used for both Physical and Virtual Memory
Manager
Based on Doubly-Linked List

13 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Evaluation

Basic Micro-Benchmarks

System operation HermitCore Rust HermitCore C Linux*
getpid() 17 17 143
sched_yield() 218 100 370
malloc() 764 6080 6575
first write access to a page 27 (4 KiB), 1407 4007

925 (2 MiB)
task switch 5170 934

in processor cycles

14 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Evaluation

Hourglass Benchmark

HermitCore Rust HermitCore C Linux*
Minimum 24 24 40
Average 30.14 30.15 69.46
Maximum 2551744 5372052 51840

in processor cycles

15 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Evaluation

Code Maintainability

HermitCore Rust HermitCore C
Files Lines of Code Files Lines of Code

Rust 57 4157 0 0
C Source 8 667 37 5781
C Header 22 866 70 4987
Assembly 6 579 4 932
Sum 93 6269 111 11700

16 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Conclusion

Rust mature enough for operating system development
Rust increases the productivity

Fewer code lines for the same features
Compiler catches bugs early

Added security comes at no significant performance overhead

If all our software was written in Rust, most security vulnerabilities would be
impossible

17 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Conclusion

Rust mature enough for operating system development
Rust increases the productivity

Fewer code lines for the same features
Compiler catches bugs early

Added security comes at no significant performance overhead

If all our software was written in Rust, most security vulnerabilities would be
impossible

17 of 18 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

Thank you for your kind attention!

Colin Finck – colin.finck@rwth-aachen.de

Institute for Automation of Complex Power Systems
E.ON Energy Research Center, RWTH Aachen University
Mathieustraße 10
52074 Aachen

www.eonerc.rwth-aachen.de

mailto:colin.finck@rwth-aachen.de
www.eonerc.rwth-aachen.de

Some Rust Features

The Result type

Can either be Ok or Err

Encapsulates the returned data on success or error information otherwise
Warning if a Result type is returned but not checked

1 of 1 Evaluation of Rust for Operating System Development and Porting Key Components of the HermitCore Unikernel
Colin Finck | ACS | May 15, 2018

	Title page
	Motivation
	The Rust Programming Language
	Some Rust Features

	The HermitCore Operating System
	Thesis Work
	Evaluation
	Conclusion
	Appendix

