
Analysis, Design and Implementation of a
Printing Stack for the Open-Source

ReactOS Operating System

Analyse, Design und Implementierung eines
Druckerstacks für das Open-Source ReactOS

Betriebssystem

Colin Finck
Matriculation Number: 314570

Bachelor Thesis
at

RWTH Aachen University
Faculty of Electrical Engineering and Information Technology

Institute for Automation of Complex Power Systems
Univ. Prof. Dr.-Ing. Antonello Monti

Supervisor: Dr. rer. nat. Stefan Lankes

Online PDF Version

I hereby declare that I wrote this thesis myself without sources other than those
indicated herein. All parts taken from published and unpublished scripts are in-
dicated as such. The paper has not been previously presented as an examination
paper in any other form.

Aachen, September 29, 2015

Kurzfassung
Das Open-Source ReactOS Betriebssystem hat das Ziel, eine Alternative zum ak-
tuell marktführenden PC-Betriebssystem Microsoft Windows zu schaffen, indem es
volle Kompatibilität mit dafür geschriebenen Anwendungen und Treibern bietet.
Aus diesem Grund müssen existierende Anwendungen (z.B. Textverarbeitungspro-
gramme) in der Lage sein, die etablierten API-Funktionen zum Drucken auch unter
ReactOS zu benutzen, ohne diese Anwendungen neu zu kompilieren oder deren Code
zu verändern.

Diese Arbeit liefert eine ausführliche Recherche zum Druckerstack des Microsoft
Windows Betriebssystems als auch einen Vergleich zu anderen verbreiteten Drucker-
stacks. Es folgt der Entwurf und eine erste Implementierung von kompatiblen Kom-
ponenten für das ReactOS Betriebssystem, um das Drucken von vorbereiteten Da-
ten in einer Druckerkontrollsprache unter Benutzung der etablierten Betriebssystem
API-Funktionen zu ermöglichen. Dies umfasst sowohl das Drucken auf echten Dru-
cker, die physisch an einen Computer angeschlossen sind, als auch die Verwendung
virtueller Drucker zur Ausgabe des Druckergebnisses in einer Datei. Die Komponen-
ten sind flexibel entworfen, sodass eine spätere Erweiterung um Treiberunterstüt-
zung für Datentyp-Konvertierungen, Benutzeroberflächenkomponenten und zusätz-
liche Druckertreiber möglich ist.

Stichwörter: ReactOS, Betriebssysteme, Drucken, Reverse Engineering

v

Abstract
The Open-Source ReactOS Operating System is aiming to provide an alternative to
Microsoft Windows - the currently dominant operating system for Personal Com-
puters on the market - by offering full compatibility with applications and drivers
written for it. As such, existing applications (such as text processing applications)
need to be able to use the established API functions to print under ReactOS without
recompiling these applications or modifying their code.

This thesis provides an in-depth research on the Printing Stack of the Microsoft
Windows Operating System as well as a comparison to other popular Printing
Stacks. The work is followed by the design and an initial implementation of compat-
ible components for the ReactOS Operating System to enable Printing of a prepared
data stream in a Printer Control Language using the established Operating System
API functions. This includes printing to real Printers physically connected to a
computer as well as employing virtual Printers to write the printing output into a
file. The components are designed in an extensible way to allow for a future addition
of driver support for datatype conversions, user interface components and additional
Printer Drivers.

Keywords: ReactOS, Operating Systems, Printing, Reverse Engineering

vii

Contents
Abbreviations 1

List of Figures 3

1 Introduction 5
1.1 Thesis Work . 5
1.2 Special Thanks . 6

2 Basics 7
2.1 The ReactOS Project . 7
2.2 The WINE Project . 7
2.3 Printing Support In Operating Systems 8

2.3.1 Microsoft Windows Printing Stack 8
2.3.2 Common UNIX Printing System (CUPS) 14
2.3.3 Comparison Of Both Systems 16

2.4 Remote Procedure Call . 16
2.5 Reverse Engineering Tools . 18

2.5.1 Dependency Walker . 19
2.5.2 GNU strings . 19
2.5.3 Rohitab Batra’s API Monitor 20
2.5.4 WinDbg . 21

3 Implementation 23
3.1 Examination Of Available Code . 23
3.2 Defining The Interfaces . 24
3.3 Choosing A Programming Language 24
3.4 Developing The Required Components 25
3.5 Integrating The Components Into The ReactOS Build System 27
3.6 Verification During Development . 27
3.7 Designing The Data Structures . 28

3.7.1 Skip Lists . 29
3.7.2 Fast Random Number Generator 31

4 Evaluation 33
4.1 Verifying The Random Number Generator 33
4.2 Testing The Skip List Implementation 33
4.3 Testing The ReactOS Printing Stack In A Virtual Machine 35
4.4 Running The ReactOS Printing Stack On Real Hardware 36

ix

Contents

5 Conclusion 37

A Listings 41
A.1 _GetRandomLevel function . 41
A.2 _RpcWritePrinter implementation 42

Bibliography 43

x

Abbreviations

API Application Programming Interface
AVL Adelson-Velski Landis
BIOS Basic Input/Output System
CUPS Common UNIX Printing System
DLL Dynamic Link Library
EMF Enhanced Metafile
GDI Graphics Device Interface
HTTP Hyper-Text Transfer Protocol
IDL Interface Definition Language
IPP Internet Printing Protocol
KD Kernel Debugging
LCG Linear Congruential Generator
LPD Line Printer Daemon
MIME Multipurpose Internet Mail Extensions
PDB Program Database
PDF Portable Document Format
PE Portable Executable
PPA Printing Performance Architecture
RCE Reverse Code Engineering
RMI Remote Method Invocation
RPC Remote Procedure Call
SMB Server Message Block
STL Standard Template Library
USB Universal Serial Bus
XML Extensible Markup Language

1

List of Figures
2.1 Spooling a Print Job into a file as implemented in current Microsoft

Windows Operating Systems . 9
2.2 Using Impersonation to switch between security contexts while pro-

cessing an WritePrinter call . 11
2.3 Printing from a Spool File as implemented in current Microsoft Win-

dows Operating Systems . 13
2.4 Architecture of the Common UNIX Printing System 15
2.5 The Dependency Walker tool used to analyze the localspl.dll of Win-

dows Server 2003 . 19
2.6 Rohitab Batra’s API Monitor used to analyze an RPC call to the

Spooler Server in Windows Server 2003 20
2.7 WinDbg debugging a User-Mode application with loaded PDB infor-

mation in Windows Server 2003 . 22

3.1 Example of a Skip List with four pointers for each node 30
3.2 Example of a Skip List maintaining distance information between nodes 31

4.1 Distribution of 1000 and 65536 elements across the levels of a 16-level
Skip List using the Minimal Standard Random Number Generator . . 34

4.2 Exemplary output of the Skip List test program 34

3

1 Introduction
ReactOS is a modern desktop operating system entirely available under Open-Source
licenses. The Project is unique in the way that it aims for compatibility with all
existing applications and drivers developed for Microsoft Windows. This exclusive
feature among free operating systems can make ReactOS an appealing alternative
to the currently dominant desktop operating system. By being distributed under
Open-Source licenses, ReactOS can offer customizations and trustworthiness not
possible with traditional closed-source systems.

Printing has become an essential feature of graphical desktop operating systems
in the 1980 years. The introduction of affordable Inkjet and Laser Printers around
the same time have turned Personal Computers into Desktop Publishing machines
able to produce high-quality documents [14]. Since then, computers have mostly
replaced traditional typewriters and typesetter systems.

Today, Printing is a self-evident ability of Personal Computers. A desktop operat-
ing system is expected to detect and install connected Printers automatically as well
as to provide intuitive options to manage and use them. One of the common tasks
of server operating systems is making a Printer available to multiple users over the
network. More recently, also smartphone and tablet operating systems have added
support for Printing [2]. However, the ReactOS Operating System has not offered
any support for Printing yet.

Operating system support for Printing also plays an important role in document
exchange. Creating a document in Adobe’s popular Portable Document Format
(PDF) is usually realized through a virtual Printer. Such a Printer can be used as
a destination from any text processing application just like a real Printer.

1.1 Thesis Work
This thesis presents an initial design and implementation of a Printing Stack for the
ReactOS Operating System.

While several Open-Source Printing Systems already exist, none of them provides
compatibility to the wide range of available Windows Printer Drivers. On the other
hand, hardware vendors often provide the most feature-rich drivers only for the
Windows platform. Therefore, the work does not build upon an existing Open-
Source Printing System, but new components are developed from scratch.

In order to achieve ReactOS’ goal of full compatibility to Microsoft Windows
applications and drivers, the Windows Printing interfaces are analyzed in-depth.
Additionally, existing code of the ReactOS Operating System is examined to de-

5

https://reactos.org

1 Introduction

termine the extent of the required implementation work. In a next step, a set of
fundamental components is developed, which form an initial Printing Stack. This
system is able to transmit prepared RAW data in a Printer Control Language to a
locally connected Printer. However, the entire architecture is designed for a further
extension by other datatypes at a later stage.

Evaluation of the written code occurs with the help of specific individual unit
tests covering the implemented features.

Although Microsoft provides a publicly available documentation about their Print-
ing implementation, it does not cover specific internals. Therefore, a special empha-
sis has been put on commenting and documenting the resulting code to serve as a
future reference.

1.2 Special Thanks
I would like to thank Univ. Prof. Dr.-Ing. Antonello Monti and Dr. rer. nat.
Stefan Lankes for offering me the unique opportunity to make ReactOS part of my
Bachelor thesis. Special thanks also go to all members of the ReactOS Project who
are maintaining this great Open-Source Project for several years.

Colin Finck
Aachen, September 2015

6

2 Basics
This chapter introduces several Open-Source software projects relevant to the thesis
implementation work. It is followed by an explanation of the backgrounds and
technical terms regarding Printing support in operating systems. Finally, some
utilities are presented, which have been widely used for the development of the
Printing Stack.

2.1 The ReactOS Project
The ReactOS Project goes back to a project called FreeWin95 in 1996 by various
software developers to create an Open-Source reimplementation of Microsoft Win-
dows 95. With no visible progress by the end of 1997, the project was restarted
in 1998 as ReactOS and shifted its goals towards providing an operating system
compatible with the Microsoft Windows NT series under the GNU General Public
License [32]. The name was chosen to express the dissatisfaction with the Microsoft
operating system monopoly and provide a reaction to it [33].

Today, ReactOS strives for compatibility with Windows Server 2003 (also known
as Windows NT 5.2) at the kernel level while applications can also make use of
some functions found in more recent Windows releases [10]. Several popular Win-
dows applications such as Adobe Photoshop or Microsoft Office are running natively
under ReactOS. This also applies to several drivers for hardware components such
as graphics adapters, network cards, or sound cards.

By providing this level of compatibility with a very popular operating system,
ReactOS aims to become a free and Open-Source alternative to it. As a lightweight
operating system, ReactOS can be a solution to keep older computers usable. Fi-
nally, the Open-Source nature of ReactOS allows for customizations not possible
with Microsoft Windows. It also reduces licensing costs and ensures confidentiality
in sensitive environments.

2.2 The WINE Project
The Open-Source WINE Project was founded in 1993 with the goal of running
Windows applications under Linux. In contrast to typical emulator software, WINE
does not simulate a full x86 processor to run an operating system on it, but instead
provides a loader for binaries in the Windows Portable Executable (PE) format along
with a set of reimplemented Windows libraries [9]. This allows applications to deliver

7

2 Basics

a higher performance under WINE than under x86 emulators, but this performance
benefit is getting lower with advancements in x86 virtualization technology.

In contrast to ReactOS, WINE does not provide any support for Windows device
drivers. The project also does not target a specific Windows version, but allows
users to choose a particular Windows version WINE shall mimic. Due to similar
licenses, code of fundamental Windows libraries is frequently exchanged between
the ReactOS and the WINE Project.

2.3 Printing Support In Operating Systems
Operating system support for Printing is as old as the Personal Computer itself, with
support for then standard Dot-Matrix Parallel Port Printers being implemented into
the original IBM Personal Computer 5150 Basic Input/Output System (BIOS) of
1981 [4, 29]. As neither a concept of Printer Drivers nor a common Printer Control
Language existed at that time, user programs were only able to output basic unfor-
matted text by default. Higher sophisticated printing of different fonts or graphics
required software developers to implement support for each Printer Control Lan-
guage into their applications. This first changed with the introduction of the Apple
LaserWriter Printer in 1985, which standardized Adobe PostScript as a vendor-
independent Printer Control Language [14]. Around the same time Windows 1.0
debuted, featuring a first Printing Stack consisting of a Print Spooler along with a
set of Printer Drivers for converting Graphics Device Interface (GDI) output into
different Printer Control Languages [13]. Instead of talking directly to the Printer,
applications now just needed to call GDI functions for printing out a document.
Usually, these are the same functions already used for displaying graphics and text
on the screen. The Spooler is responsible for enabling non-blocking access to a single
shared Printer by multiple applications.

With Windows, Mac OS X, and Linux evolving into the three popular operating
systems these days, two Printing Stacks remain. These are described in the following
sections.

2.3.1 Microsoft Windows Printing Stack
The Printing Stack of the Microsoft Windows Operating System is unique in the
way that some higher level components maintain compatibility with all previous
Windows versions. At the same time, lower level parts follow the latest principles of
modern operating systems. A schema of the Printing Process under Windows 2000
and later is given in Figures 2.1 and 2.3. All components involved are explained
in the following. Yellow marked nodes denote components, for which compatible
replacements are implemented within this thesis.

User-Mode Windows applications interact with the operating system by calling
documented Application Programming Interface (API) functions from operating sys-
tem Dynamic Link Library (DLL) files. To print out a document, an application

8

2.3 Printing Support In Operating Systems

Application

GDI
gdi32.dll

Spooler API
winspool.drv

Spooler Server
spoolsv.exe

Spooler Router
spoolss.dll

Local Spooler
localspl.dll

Internet Print Provider
inetpp.dll

LanMan Print Services
win32spl.dll

Spooler Server
on another computer

Spool File IPP-capable Printer

RPC Calls over
ncalrpc protocol

RPC Calls over
ncacn_np protocol

Figure 2.1: Spooling a Print Job into a file as implemented in current Microsoft
Windows Operating Systems

usually begins by composing the document out of graphics and text using GDI func-
tions (implemented in gdi32.dll). Afterwards, GDI serializes the drawing commands
into the Enhanced Metafile (EMF) format and uses Spooler API functions to set up
a new Print Job. The generated EMF data is then passed to the Print Job. If the
application does not need to compose the document, but already has prepared data
in a format supported by the Print Processor, it can skip the route through GDI
and call the Spooler API functions directly [37].

For historical reasons, the Spooler API is implemented in a file called winspool.drv.
Despite its different extension, this file has the same structure as other operating
system DLL files. An individual instance of winspool.drv is loaded with every appli-
cation that uses functions of the Windows Printing Stack. Its API can be categorized
as follows:

• Opening handles to Ports, Print Monitors, Print Servers, and Printers (all
through OpenPrinter [21])

• Performing further operations on these opened objects (e.g. preparing a new
document with StartDocPrinter or retrieving information with GetPrinter)

9

2 Basics

• Adding, deleting, and enumerating available Forms, Ports, Print Monitors,
Print Processors, Printers, Printer Configuration Data, Printer Connections,
and Printer Drivers as well as their properties (Add*, Delete*, and Enum*
group of functions)

• Receiving notifications about status changes inside the Printing Stack
(*PrinterChangeNotification group of functions)

• Providing User Interfaces to let the user configure Printer and Print Job set-
tings

As every application loads its own instance of winspool.drv, the operating system
needs to provide a single service, which is loaded only once and centrally manages
Printer utilization. This instance is the Spooler Server, which is implemented as a
Windows Service in the module spoolsv.exe. Communication between winspool.drv
and spoolsv.exe happens through Remote Procedure Calls (RPCs). RPC is a popular
concept for enabling a process to call a function in another process, even on another
computer, without writing any network-specific code. Almost every winspool.drv
function performs an RPC call to the matching counterpart function in the Spooler
Server. RPC calls are further discussed in Section 2.4.

Accepting RPC calls of all users requires the Spooler Server to be a high-privileged
process. This bears some security risks as a possibly vulnerable RPC call could be
used to let a low-privileged client run code in the security context of the high-
privileged Spooler Server. To mitigate this possible attack, the Spooler Server em-
ploys the concept of Impersonation. The Impersonation feature of Windows allows
a thread to temporarily drop its high privileges by switching to the security context
of another user [24].

In the case of the Spooler Server, every RPC call is implemented as follows: First
of all, the Spooler Server impersonates the calling client. Afterwards, a matching
function in the Spooler Router is called (implemented in spoolss.dll). The Spooler
Router offers such a counterpart to each RPC call. Finally, the security context of
the Spooler Server is restored and the RPC call returns. This ensures a clean sepa-
ration between code running in the high-privileged Spooler Server security context
and code running in the low-privileged user context. The entire process is exem-
plified for a WritePrinter call in Figure 2.2. The full listing for the implemented
ReactOS RPC server function can be found in Appendix A.2.

The Spooler Router derives the name from its principal task, namely routing an
incoming function call to one or more Print Providers. These Print Providers also
offer a counterpart to each function implemented in the Spooler Router. Due to
the nature of the functions, there are basically three ways how a Spooler Router
function is implemented:

• Subsequently route a function call to every available Print Provider until one
of them indicates success. This is done for e.g. the OpenPrinter function to
determine the Print Provider that can handle the respective Printer.

10

2.3 Printing Support In Operating Systems

Low-privileged User Context High-privileged System Context

Application calls WritePrinter
in winspool.drv

winspool.drv calls _RpcWritePrinter
to perform an RPC call to

the Spooler Server

Spooler Server calls
RpcImpersonateClient
to impersonate the caller

Spooler Server calls matching
WritePrinter in Spooler Router

...

Spooler Server calls RpcRevertToSelf
to switch back to its own security context

Spooler Server returns the
error code of its performed

WritePrinter call

Figure 2.2: Using Impersonation to switch between security contexts while process-
ing an WritePrinter call

• Directly route the function call to the Print Provider, for which a previous
OpenPrinter call succeeded. This is done for all functions accepting a handle
returned by OpenPrinter.

• Route the function call to all available Print Providers and collect the returned
information. This is done for e.g. EnumPrinters to retrieve information about
all available Printers.

Windows ships with these Print Providers by default:

• The Local Spooler (implemented in localspl.dll) handles Printers locally con-
nected to the computer.

• The Internet Print Provider (implemented in inetpp.dll) forwards calls to Re-
mote Printers using the Internet Printing Protocol (IPP).

11

2 Basics

• The LanMan Print Services (implemented in win32spl.dll) are used when ac-
cessing Remote Printers shared by another Windows computer.

Another Print Provider (nwprovau.dll) for accessing Printers on Novell NetWare
servers used to be available, but became largely irrelevant due to the demise of the
NetWare Operating System. It has finally been removed in Windows Vista. The
extensible architecture enables third-party vendors to ship additional Print Providers
for supporting other protocols.

In the following, we only take a look at the Local Spooler. The Local Spooler
finally does the real work of managing the Print Queues for all locally connected
Printers instead of passing on the received function call to another module. Syn-
chronous communication between computers and Printers can be a major bottleneck.
Therefore, the Local Spooler first writes the received data to print into a so called
Spool File and then starts a thread to transmit that Spool File to the Printer. This
enables the users to continue their work in the application while the Local Spooler
transmits the Spool File to the Printer in the background. Without this two-stage
process, the application would be blocked until the last page of the entire Print Job
has finished printing.

The started thread now loads the Print Processor (implemented in winprint.dll
since Windows Vista, previously part of localspl.dll), which is responsible for reading
the print data from the Spool File and applying Print Job specific settings. These
include settings like Multiple Copies, Collation, Reverse Printing, Duplex Printing
or N-up Printing. Available options in this regard highly depend on the datatype
of the print data. A Printer vendor can provide its own Print Processor to support
additional options instead of using the Windows default one.

If the datatype is RAW, the print data is assumed to be of a Printer Control
Language and the Print Processor simply passes it on without any further processing.
For the EMF datatype, Print Job specific settings are applied first before the print
data is converted into Printer Control Language. The conversion is performed using
a Printer Graphics DLL supplied by the Printer vendor, which heavily uses functions
from GDI to convert the EMF data. The Printer Graphics DLL is also called the
actual Printer Driver, because it is the only component specific to the Printer in
this process.

In a next step, Spooler Router functions are used to transmit the print data
in a Printer Control Language to a Print Monitor. Two types of Print Monitors
exist: Language Monitors and Port Monitors. A Language Monitor is written for a
specific Printer Job Language to communicate bidirectionally with the Printer. This
communication enables the Monitor to receive detailed Printer status information
or add control codes to the print data before passing it to the Port Monitor. Control
codes can be used to set a wide range of options. One example is switching between
multiple Printer Control Languages supported by the Printer.

If the Printer does not require such control codes, the Language Monitor can be
skipped and the print data directly flows to the Port Monitor. By default, Windows

12

2.3 Printing Support In Operating Systems

Spool File Print Processor
winprint.dll

Printer Driver
Graphics DLL

GDI
gdi32.dll

Spooler Router
spoolss.dll

Local Spooler
localspl.dll

Language Monitor
pjlmon.dll

Local Port Monitor
localmon.dll

USB Port Monitor
usbmon.dll

User-Mode Kernel API for accessing a port
kernel32.dll

Printer

For EMF datatype

Converted to RAW datatype

For RAW datatype

Figure 2.3: Printing from a Spool File as implemented in current Microsoft Windows
Operating Systems

ships with a Language Monitor that implements the HP PJL Printer Job Language
[20].

A Port Monitor is responsible for managing unidirectional data output to a phys-
ical computer port. Depending on the type of port, this can range from simply
opening the port through a kernel function (like Parallel Ports) to performing a
complex wireless detection sequence (for Infrared Printers). The following Port
Monitors are shipped with Windows:

• The Local Port Monitor (implemented in localmon.dll until Windows NT 4.0,
part of localspl.dll since Windows 2000) manages Parallel, Serial, and Infrared
Ports as well as redirecting the printing output into a file.

• The USB Port Monitor (implemented in usbmon.sys) manages Printers con-
nected to a Universal Serial Bus (USB) port.

This architecture again provides support for additional Print Monitors. Such
extensibility is heavily used by third-party companies. For example, Adobe has

13

2 Basics

implemented a PDF Port Monitor for a virtual PDF Printer that converts the print
data into a PDF file [1].

2.3.2 Common UNIX Printing System (CUPS)
The Common UNIX Printing System (CUPS) was developed and released by Michael
Sweet in 1999 to address the lack of a standard printing interface in UNIX-based
operating systems (such as Linux) at that time [36]. Previously, there were two
competing systems, namely the System V Printing System (lp) and the Berkeley
Printing System (lpr), which were incompatible to each other and only supported
text and PostScript printing. Printing other formats required third-party tools to
account for the vast majority of available Printers.

CUPS has quickly emerged as the de-facto standard Printing Stack under Linux,
with User Interfaces being available for the two major desktops KDE and GNOME
[27] [5]. CUPS has also been adopted by Apple in 2002 to serve as the Printing
System for Mac OS X 10.2 and later versions [7].

The architecture of CUPS is depicted in Figure 2.4.
An application can initiate a Print Job with CUPS in three different ways. The

most common one is using the cupsPrintFile function (or a similar one) of the
CUPS C API to print a file of a known filetype. The API function then initiates a
Request over the IPP protocol to a CUPS instance on a local or remote computer.
As IPP is a documented plaintext protocol based on Hyper-Text Transfer Protocol
(HTTP), an application can also easily generate a similar IPP request itself and
transmit it to the CUPS Daemon without using the CUPS API. Finally, CUPS also
provides the cups-lpd daemon to provide compatibility with older applications using
the Line Printer Daemon (LPD) protocol of the Berkeley Printing System. cups-lpd
translates incoming LPD Requests to the IPP protocol using the CUPS API.

In all three cases, the Print Request arrives at the CUPS Daemon. Depending
on the Print Job settings and Printer utilization, the Job is processed immediately
or scheduled for later. When processing the Job, CUPS first checks its filetype.
PostScript files can instantly be forwarded to the pstops program while other file-
types need a conversion to PostScript format by the so called prefilter first. CUPS
can support any filetype, for which a converter program to PostScript exists, like
plaintext files, image formats or web pages. Filetypes and converter programs are
determined using the system-wide Multipurpose Internet Mail Extensions (MIME)
database available on every UNIX-based operating system. In a next step, the
converter program is called and its output is fed to the pstops program.

The pstops program expects a PostScript input file and applies Print Job specific
settings like N-up Printing or extracting a page range to print. It also normalizes
the input to account for the paper format of the target Printer.

The type of Printer used decides about the next step. If the target Printer un-
derstands PostScript, the output from pstops can directly be submitted to a CUPS
Backend. Otherwise, the next step depends on whether CUPS natively provides
support for the target Printer. If it does, the output is first converted to a CUPS

14

2.3 Printing Support In Operating Systems

Application

cups-lpd Daemon

CUPS
API

CUPS Daemon

Prefilter

pstops

foomatic-rip

pstoraster

Printer-specific
filter

CUPS Backend

Printer

LPD protocol

IPP protocol

IPP protocol

Figure 2.4: Architecture of the Common UNIX Printing System

raster image file format using the pstoraster tool and then sent to a Printer-specific
filter, which generates data in a Printer Control Language from it. Finally, that
data is submitted to a CUPS Backend as well. If CUPS does not natively support
the target Printer, a solution may still be found in the third-party Foomatic Project.
The Foomatic Project provides a set of programs that convert PostScript data to
various Printer Control Languages without utilizing an intermediate raster format.
If the Printer is supported by the Foomatic Project, pstops passes its output to the
foomatic-rip program, which in turn outputs data in a Printer Control Language
and submits it to a CUPS Backend [26].

CUPS provides several backends for transferring the received data to the actual
Printer. The type of backend used depends on the port and location of the target
Printer. For example, this can be a Printer connected to a Parallel, Serial, or USB
port as well as a Remote Network Printer communicating over e.g. IPP, Server
Message Block (SMB) or JetDirect protocol.

15

2 Basics

2.3.3 Comparison Of Both Systems
A neutral comparison of both Printing Stacks is not possible, because they were
designed in different epochs, on different operating system architectures, and with
different compatibility targets and different third-party support strategies in mind.
However, some major differences between both systems are outlined in this section.

The Windows Printing Stack allows third-party Printer vendors to add support for
their Printer by implementing a custom Printer Graphics DLL. This DLL file is then
responsible for converting data from EMF format to a Printer Control Language. On
the other hand, CUPS provides several ways to add support for a new Printer. The
program for converting data to Printer Control Language could be a filter program
that takes the CUPS raster data as input. It could also be a Foomatic plugin that
directly operates on PostScript input data. This offers developers more flexibility,
but shifts the complexity to the user, who has to know what type of CUPS Printer
support the Printer vendor implemented. Based on this information, different steps
need to be taken to install the Printer.

CUPS follows the UNIX principle of one program per task, so it divides its process-
ing into several individual programs. From one processing step to another, process
parameters are constructed, a new process is created and its parameters are parsed.
Afterwards, the print data output of the previous process is copied to the new pro-
cess by writing it to its standard input handle. The whole procedure requires process
creation on the underlying operating system to be a relatively cheap operation in
order to make the performance loss involved negligible. Some overhead is also added
due to the construction and parsing of process parameters. On the other hand, the
Windows Printing Stack interfaces between different components by using C func-
tion calls and passing memory pointers. This works with no additional overhead and
does not add implications to the performance of the underlying operating system.

One may also expect severe scalability differences when comparing both Printing
Stacks at serving Print Requests for a high number of clients. Traditionally, the Print
Server needs to perform the expensive task of converting the incoming print data to
Printer Control Language for all clients. When a CUPS instance is configured on
both the client and server though, the CUPS architecture provides a way to offload
data conversion to the clients and only send converted data in a Printer Control
Language to the target Print Server. Starting with Windows Vista, Microsoft has
also introduced this feature in the Windows Printing Stack under the name Client-
Side Rendering [18]. Therefore, both Printing Stacks perform equally well at serving
a high number of clients nowadays.

2.4 Remote Procedure Call
A Remote Procedure Call (RPC) is an interprocess communication concept to let
programs execute functions in other programs, which are typically running on a
different computer. The required information about the function call and its pa-

16

2.4 Remote Procedure Call

rameters are transmitted over the network. RPC is widely adopted due to the fact
that it abstracts these network communication details away from the developer. This
way, a remote function call be done just as easy as a local one and the developer
does not need to write network-specific code.

The first popular implementation was the Open Network Computing Remote Pro-
cedure Call for UNIX-based operating systems proposed by Sun Microsystems in
1984 [6] (also called Sun RPC). Nowadays, popular implementations include Java’s
object-oriented Remote Method Invocation (RMI) as well as Microsoft’s implemen-
tation called MSRPC integrated into Windows. Latter one is further illustrated in
this section.

MSRPC is derived from the Open Software Foundation’s Distributed Computing
Environment DCE/RPC implementation and first appeared in Windows NT 3.1 [3].
Among other details, it extends the DCE implementation with additional parameter
types and transport protocols while still maintaining backwards compatibility with
it [16].

To make use of MSRPC, a developer has to define an interface through a supple-
mental file written in Interface Definition Language (IDL). This file contains pro-
totypes for all functions to be called remotely, annotated with details about their
input and output parameters as well as the length of the data transferred through
each parameter. Afterwards, Microsoft’s MIDL compiler is used to generate C code
out of an IDL file, separately for the client and server applications. The developer
can then write both applications communicating with each other. Finally, each ap-
plication is linked against Windows’ rpcrt4.dll library, which is responsible for the
underlying network communication happening in the background.

Every function defined in the IDL file can be called in the client application and
the call arrives at a function with the same name defined in the server application.
This happens in the following way:

1. The client calls a function defined in the interface. This actually calls the
generated client code by the MIDL compiler.

2. The generated code composes a network message out of the function name
and all given parameters. This process is called Marshalling.

3. The network message is sent by the client and received by the server applica-
tion.

4. The generated code of the server application reconstructs the function name
and its parameters out of the message. This process is called Unmarshalling.

5. With all this information, the generated code calls the respective implemented
function in the server application.

MSRPC builds the basis for several Windows core components, one of them being
the Print Spooler. As illustrated in Figure 2.1, RPC communication happens locally

17

2 Basics

between the Spooler API in winspool.drv and the Spooler Server in spoolsv.exe. It
also happens remotely from the LanMan Print Services component in win32spl.dll
to a Spooler Server on a different computer. Two different RPC protocols are used
here, which are explained in the following:

• ncalrpc
The Network Computing Architecture Local Remote Procedure Call Protocol
represents the most efficient way to perform an RPC call, when client and
server application both reside on the same computer [22]. This is the case for
winspool.drv and spoolsv.exe.

• ncacn_np
The Network Computing Architecture Connection-Oriented Named Pipe Pro-
tocol supports an RPC call between different computers relying on Named
Pipes for the network transport [16]. Named Pipes represent a high-performance
communication method integrated into Windows. This protocol is well suited
for communication between win32spl.dll and a remote spoolsv.exe instance.

A deeper look into RPC would go beyond the scope of this thesis. Refer to [12]
for further information on this topic.

2.5 Reverse Engineering Tools
Reverse Engineering in Computer Science or Reverse Code Engineering (RCE) is the
process of examining an existing software or technology in order to gather enough
details for an own reimplementation that is compatible to the original. Various legal
methods backed by court decisions exist to perform this process without infringing
copyrights. These are commonly referred to as Clean-room Reverse Engineering.

Popular realizations of Reverse Engineering include the creation of a 100% com-
patible reimplementation of the IBM PC BIOS by Compaq Computer Corporation
for its own computers in 1982. This step was fundamental to the computer indus-
try as it paved the way for a large upcoming market of IBM-compatible comput-
ers. Reverse Engineering techniques have also been used during the development of
the LibreOffice Productivity Suite to enable compatibility with Microsoft Office file
formats. The LibreOffice implementation is available for more operating systems,
increases competition on this market and avoids a vendor lock-in to products of a
single company.

With Microsoft Windows being the most popular closed-source operating system,
several advanced tools for Clean-room Reverse Engineering under Windows exist.
Some of them have been used during the thesis work and are presented in the
following.

18

2.5 Reverse Engineering Tools

Figure 2.5: The Dependency Walker tool used to analyze the localspl.dll of Windows
Server 2003

2.5.1 Dependency Walker
The Dependency Walker tool provides an overview of the Dynamic Link Libraries
(DLLs) referenced by a module as well as the exported and imported API func-
tions from this module. It thereby offers a good entry point into figuring out
the purpose of a module and its dependencies with other modules. The tool is
bundled with a number of Microsoft development products and also available as
a free download from www.dependencywalker.com. A screenshot of the Depen-
dency Walker user interface is given in Figure 2.5. It clearly shows the exported
API functions GetPrintProcessorCapabilities, InitializePrintMonitor, and
InitializePrintProvidor of Windows Server 2003’s localspl.dll. From this fact,
one can conclude that this localspl.dll integrates the three distinct components Print
Monitor, Print Processor, and Print Provider into a single module.

2.5.2 GNU strings
The GNU strings utility reads any binary file and outputs all found sequences of
printable characters. It supports interpretation of the characters as ANSI and Uni-
code strings, which is a requirement for analyzing Windows applications that often
use both character sets. The tool reveals many interesting strings contained in
Windows modules, for example:

• Registry keys used to store the module’s settings

19

http://www.dependencywalker.com

2 Basics

• Paths to other related files

• Template data used by the module to fulfill its tasks

• Error messages (useful to get an idea what tasks are fulfilled by the module)

GNU strings is part of the Open-Source GNU Binutils package and shipped with
many Linux distributions [8]. A Windows version of the tool is part of the ReactOS
Build Environment.

2.5.3 Rohitab Batra’s API Monitor
The API Monitor by Rohitab Batra is a freely downloadable tool from rohitab.com.
It offers an efficient graphical user interface for monitoring the API function calls of
selected applications. For API functions known to the tool, the supplied parameter
values are extracted and passed structures are decomposed. The application can be
enhanced to monitor additional API functions by writing simple function definition
files in Extensible Markup Language (XML). A screenshot of the tool is given in
Figure 2.6. This one reveals that Windows’ Spooler Server actually calls the Spooler
Router function AddJobW when it receives a StartDocPrinter call over RPC, despite
the existence of a matching StartDocPrinterW function in the Spooler Router.
Passed parameters before and after the call are extracted and subsequent API calls
recorded.

Figure 2.6: Rohitab Batra’s API Monitor used to analyze an RPC call to the Spooler
Server in Windows Server 2003

20

https://www.reactos.org/wiki/Build_Environment
https://www.reactos.org/wiki/Build_Environment
http://rohitab.com

2.5 Reverse Engineering Tools

2.5.4 WinDbg
WinDbg is a debugger offered as a free download by Microsoft. It supports de-
bugging User-Mode and Kernel-Mode applications and is generally the debugger of
choice for Windows driver developers due to its tight integration into the Microsoft
development environment. Kernel-Mode debugging can happen on the local system
or on a remote computer that is connected through a Serial, FireWire, USB or Eth-
ernet cable. In a next step, Windows is booted with the Kernel Debugging (KD)
Protocol enabled to let the debugger connect and afterwards break into every com-
ponent of the operating system at any time. This Protocol has also been adopted
by the ReactOS Operating System to provide a debugging experience comparable
to Windows. That means, the same WinDbg application can be used to debug
ReactOS just like a usual Windows environment.

WinDbg can retrieve information from Program Database (PDB) files to provide
single stepping through C/C++ source code files and detailed symbol information.
PDB files are either generated by the Visual C++ compiler (for self-written applica-
tions) or downloaded from the Microsoft Symbol Server (for closed-source Windows
components). While latter ones do not reveal any source code of Windows com-
ponents, the closed-source PDB files make WinDbg aware of some variables and
function names. On top of this, WinDbg comes with a handful of extensions that
provide several abstract views on the operating system state. For example, this
encompasses loaded processes and threads, bluescreen analysis, and hardware sta-
tus information. A typical WinDbg screen is shown in Figure 2.7. With all these
possibilities combined, WinDbg provides quite a powerful tool to gather information
about any software under Windows or single step through it.

21

2
B

asics

Figure 2.7: WinDbg debugging a User-Mode application with loaded PDB information in Windows Server 2003

22

3 Implementation
This chapter details the conducted research of the required components for the
Printing Stack as well as their actual implementation. The developed components
build up the foundations for a ReactOS Printing Stack that maintains compatibility
with Windows API functions.

3.1 Examination Of Available Code
As a first step, the ReactOS codebase was examined to to figure out available and
unavailable components as well as the quality of their code. Prior to this work, the
project’s source tree merely provided a basic skeleton for a Spooler Server along
with some Printing components imported from the WINE Project. An inquiry to
the original developer revealed that the Spooler Server skeleton was only added to
let applications check the existence of that particular service. The service did not
serve any meaningful purpose, so it could be safely removed and implemented from
scratch during the thesis work.

A further inspection of WINE’s Printing components led to the conclusion that
their code could not be reused either. WINE only provides a compatible replace-
ment of winspool.drv to account for many standard cases of Printing applications.
But instead of forwarding calls to the remaining components of the Windows Print-
ing Stack, WINE’s winspool.drv translates incoming Print Requests to CUPS com-
mands. WINE’s Spooler Server is only a basic service skeleton as well and additional
DLL files like spoolss.dll and localspl.dll are unimplemented in essential parts. Due
to these reasons, the WINE Printing components were removed from the tree as
well.

On the plus side, the ReactOS ecosystem has matured enough to provide a working
RPC Server, compatible kernel functions and a Parallel Port Driver. This allowed
a clear focus on printing-related components during the thesis work.

The only other notable Open-Source project sharing similar goals is the Samba
Project, which implements several components to let UNIX computers interact in
a network with Windows machines. These components also include support for
Network Printing. But due to Samba’s focus on UNIX systems, only some interface
information could be used. No related code for the implementation of a ReactOS
Printing Stack has been offered by the project.

After the ReactOS codebase had been completely examined, development on the
new Printing Stack components could start.

23

3 Implementation

3.2 Defining The Interfaces
Implementation on a ReactOS component providing compatibility with a Windows
one begins by defining its API functions in a so called SPEC file. The SPEC file
format was invented to account for the differences in linker information file formats
between the GNU Linker and the Microsoft Linker. Additionally, one can denote a
function as a stub in a SPEC file and that function will be exported with a simple
entry point. If an application calls such a stub function, the call is reported through
a text message, but nothing else happens. This still allows other features of the
application to work properly. Without stub functions, the application may crash or
not even load at all. SPEC files are processed by the spec2def utility during the
ReactOS build process, which converts the information into a linker information file
suitable for the used linker and generates the entry points for the stub functions.

The names of all provided API functions in winspool.drv and spoolss.dll could
easily be determined by opening the matching DLL files from Windows Server 2003
in Dependency Walker and inspecting the Exports section. Consequently, parame-
ters for several basic Printing APIs were looked up on the web. As these functions
are fundamental to any application making use of Printing, the MSDN Website
offers a detailed documentation on them. After linking the documentation from
both sources together, the SPEC files for winspool.drv and spoolss.dll were written.
Fundamental functions were added in all details while most of the other APIs were
defined as stubs to allow a later implementation when necessary.

The Spooler Server process required a radically different approach to gain com-
patibility. Its interfaces are not based on regular function calls, but use RPC calls
defined in IDL files. These cannot simply be revealed by a tool like Dependency
Walker. Instead, they usually require monitoring of the RPC functions and recon-
struction of the names and parameters.

The Samba Project has done this work for its Network Printing support and
provides a corresponding IDL file. A similar research has also been independently
conducted in [15]. Furthermore, Microsoft has begun to document the Print System
RPC Interface in 2007 and now provides a freely usable IDL file covering a subset
of the RPC functions [17]. By combining the information from these three sources,
a detailed IDL file could be constructed for defining the ReactOS Spooler Server
interfaces.

3.3 Choosing A Programming Language
ReactOS components are either written in C or C++, with some performance-
critical or processor-specific code written in Assembly language. Due to the porta-
bility issues involved, Assembly language is only used as a last resort though. It
definitely offers no advantages for the development of a Printing Stack.

The remaining decision between C and C++ has been made based on compat-
ibility requirements. Advantages of C++ for a Printing Stack would lie in the

24

http://msdn.microsoft.com
https://git.samba.org/?p=samba.git;a=blob;f=librpc/idl/spoolss.idl;hb=618af83d1bd07b12a9acc88b0d2111cab7a8bb2b

3.4 Developing The Required Components

object-oriented approach towards lists and strings. The Standard Template Library
(STL) shipped with every C++ development environment provides container classes
like list and vector as well as string for handling character sequences of arbi-
trary length. However, Windows exposes a pure C interface for its fundamental
Printing Stack functions due to historical reasons. Using C++ objects internally
would require conversions between both data formats in every step. This would
basically lead to additional overhead and cancel out most advantages of C++ for
the development of a Printing Stack.

Therefore, the choice fell on the C language for all developed components of the
Printing Stack. The unavailability of standard container classes in C is outweighed
by the number of library functions ReactOS provides for development in C.

3.4 Developing The Required Components
As a first step towards an adequate ReactOS Printing Stack, a small test application
called winspool_print was written in C. It uses fundamental API functions of the
winspool.drv component to send a file with arbitrary RAW data to a local Printer.
Afterwards, the goals of the development work were defined around this application:
The created ReactOS Printing Stack must implement all required APIs and com-
ponents for getting winspool_print to work. Code shall be written in a compatible
and flexible way that easily allows a further addition of the not yet implemented
features.

In particular, this led to the following components being developed:

• winspool.drv
The Spooler API in winspool.drv implements all character encoding dependent
functions for the default single-byte character set and double-byte Unicode.
For the beginning, only some Unicode functions have been implemented, be-
cause these are recommended for new applications. Future implemented single-
byte character set functions will simply convert between both encodings and
then call a corresponding Unicode function. Besides, more advanced Spooler
API functions not required for the winspool_print tool were added as simple
stubs for now.

• spoolsv.exe
The Spooler Server directly builds upon the IDL file, which defines its com-
plete RPC communication interface. As a result, all 96 RPC calls need to be
implemented as functions inside spoolsv.exe. Since many of them are unrelated
to getting the basic winspool_print tool to work, some were just implemented
to return the error code ERROR_INVALID_FUNCTION when being called. The
others correctly perform Impersonation and pass the call to a Spooler Router
function.

25

3 Implementation

• spoolss.dll
The Spooler Router has been implemented with the same subset of API func-
tions that were considered for winspool.drv. Apart from this, the DLL also
provides fundamental Impersonation and Memory Management functions to
all Printing components. Impersonation has been discussed in Section 2.3.1.
Due to the wide usage of these APIs, they received intensive Black-Box Testing.
That means, the functions were called with defined input data under Windows
and their output was recorded. Based on the correlations between input and
output, hypotheses were made and verified with further similar tests. Finally,
enough information has been gathered to write compatible substitution code.

• localspl.dll
For sending RAW data to a Printer, the Local Spooler in localspl.dll needs to
manage Printers, Print Jobs, Print Monitors and Print Processors as well as
a list of Ports managed by Port Monitors. Support for Forms, Printer Drivers
as well as their configuration data can be added at a later stage.
In contrast to the Windows counterpart of localspl.dll, the Port Monitor and
Print Processor parts were sourced out into individual DLL files for the ReactOS
implementation. This decision logically separates such distinct components
and follows the Windows Printing Architecture more closely.

• winprint.dll
The variant of winprint.dll implemented for ReactOS contains the default
Print Processor called WinPrint. Under Windows Server 2003, this one is part
of localspl.dll and supports EMF, RAW and TEXT datatypes. To achieve the
goal of getting winspool_print to work, code for processing the RAW datatype
is needed. This code simply passes the data to the Port Monitor without
altering it in any way. On the other hand, it has been developed flexible
enough to account for a later addition of more datatypes.

• localmon.dll
The Local Port Monitor is also part of localspl.dll under Windows Server
2003, but has been sourced out into the localmon.dll file for ReactOS. While
the original Windows Local Port Monitor provides support for Parallel and
Serial Ports along with Infrared Printers, support for the latter has not been
implemented into the ReactOS counterpart yet. This decision originates from
the unavailability of an Infrared Printer at the time of development as well as
the added complexity that comes with a wireless link.

The implemented components are marked in yellow in Figures 2.1 and 2.3. Making
them usable for the intended purpose also required an integration into the ReactOS
Build System. This step is illustrated in the next section.

26

3.5 Integrating The Components Into The ReactOS Build System

3.5 Integrating The Components Into The ReactOS
Build System

The ReactOS Project features a Build System based on the CMake Build Automa-
tion Tool. This system supports building ReactOS under Windows, Linux, or Mac
OS X using either GCC or the Microsoft Visual C++ compiler. In order to prop-
erly add the developed components to the operating system build process, several
so-called CMakeLists files have been written. These are usual plain-text files ed-
itable with any text editor. Each of them defines a module, its type (Application or
DLL), its target location in the operating system, the associated source code files,
and the libraries it depends on. This information is sufficient for CMake to call the
corresponding compilers and linkers to build suitable binary files.

3.6 Verification During Development
One of the basic rules when writing operating system code is to make no assumptions
at any stage [11]. The developed APIs will later be called by thousands of third-party
applications. This requires a developer to consider every possible case of calling a
particular function and respond accordingly.

In the case of the Windows Printing Stack, a pure C API is exposed. It throws no
exceptions and responds to failure cases by setting an appropriate return value and
a Win32 Error Code [23]. Such error codes can be very specific and some applica-
tions may implement code paths that check for a particular error code. Therefore,
developing a compatible reimplementation also requires figuring out the returned
error code for each possible failure case.

The ReactOS Project is tackling this problem through Regression Tests. After
verifying the behavior of an API function under Windows, a developer usually writes
a Regression Test that calls the function with defined input data and checks that
it returns the verified output. The test is then run under ReactOS to verify that
the implementation of the function is compatible to the original. In a next step,
regularly running this test catches cases where changes in one module accidentally
break functionality in another module. Currently, the ReactOS Project runs all
available Regression Tests after every commit to the source code repository. The
results are then parsed, inserted into a database and later searchable online through
the ReactOS Test Manager.

Writing Regression Tests for winspool.drv was straightforward due to the fact that
this is a documented API used in every Printing application. For now, the test is only
able to call deterministic informational functions though (like GetPrintProcessor-
Directory). Many other functions require the presence of a Printer, which is not
guaranteed, and they also behave differently based on the type of Printer connected.
Consequently, these functions are not yet covered by the Regression Tests.

However, other components of the Printing Stack are harder to test. A prominent
example is localspl.dll. Under Windows, the Spooler Server, Spooler Router, and

27

http://www.cmake.org/
https://reactos.org/testman

3 Implementation

this DLL are intertwined with each other in a way that prevents loading localspl.dll
in any other application.

Nevertheless, it was possible to verify the behavior of its Print Provider functions
under Windows by using a different approach: The code for testing the function
was put into a self-written DLL file. A standalone application was then launched
with highest privileges in order to let it use the Windows CreateRemoteThread API
function, which creates a new thread in the running Spooler Server process [19].
The created thread loaded the testing code from the DLL file and by running that
code in a thread of the Spooler Server, it can access all functions of localspl.dll.
Eventually, this testing method offered unique insights into the internal behavior of
the Local Spooler. These were used to develop a compatible replacement and verify
it against the original.

However, gathering such information from existing components is only one part of
developing a Printing Stack for ReactOS. At a later development stage, the design
of custom data structures also became necessary. This step is further discussed in
the next section.

3.7 Designing The Data Structures
One of the Local Spooler’s primary tasks is managing a changing number of Printers,
Print Monitors, and Print Processors in a list. Along with every Printer comes a pri-
oritized Job Queue. The exposed Spooler API allows to add, remove, and enumerate
items from these lists. Moreover, it also allows Print Jobs to be reprioritized or to
get their Job index in the list. Calling these APIs often causes lookup operations to
be performed in the background.

Windows offers a variety of abstract data types ready to use in Kernel-Mode
and User-Mode applications. Two of them were further analyzed with a focus on
usability for the Printing components:

• Doubly-linked Lists
A Doubly-linked List implemented through Windows’ LIST_ENTRY structure
is the simplest abstract data type for these tasks. It can do standard opera-
tions like additions, enumerations, and removals always in 𝒪(1), provided that
no lookup is necessary beforehand. Lookups are an expensive operation for
Linked Lists though, because they are only doable in linear time. Consequently
repriorizing a Job, which involves deleting and reinserting an element at an-
other position, needs linear time as well and shares the same 𝒪(𝑛) complexity.
Therefore, the focus shifted to other abstract data types.

• Generic Tables
The Windows Run-Time Library also offers a data structure called General
Table. Depending on the compile options, this one is either implemented as an
Adelson-Velski Landis (AVL) tree or a Splay Tree [25]. Both are comparable in
complexity, so they will not be discussed separately. The tree structures also

28

3.7 Designing The Data Structures

offer 𝒪(1) complexity for additions and removals on average. Lookups and
consequently repriorizations are usually faster, with a complexity of 𝒪(log 𝑛)
on average. On the other hand, enumerations bear a higher complexity, since
finding the next element of an in-order traversal is a non-trivial operation.
For usage inside the Printing components, there is another major downside
compared to the LIST_ENTRY-based implementation of Doubly-linked Lists:
Every insertion allocates a new block of memory instead of reusing the existing
one. Among added overhead, this makes pointer references more complicated,
because the element address is only known after the insertion. Another dis-
advantage is the opaque structure of Generic Tables, which allows no further
extensions. Due to the already high complexity of enumerations, this makes
figuring out the element index inside Generic Tables an even more expensive
operation, with a complexity greater than 𝒪(𝑛).

As both integrated abstract data types were not satisfying the requirements, a
data structure adjusted to the needs of the Printing components has been developed.

3.7.1 Skip Lists
Skip Lists were introduced by William Pugh in 1990 as an easy to implement alter-
native to balanced trees [31]. They build upon the structure of singly-linked lists,
but every node features an array of pointers instead of a single pointer to a next
node. The array size is predefined at compile time.

Every time a node is inserted into a Skip List, a geometrically distributed random
function for 𝑝 = 0.5 is called to return a level for it. The level determines how many
pointers to a next node are used. Consequently, it can be between 1 and the array
size. In the long run, every next higher level appears only half as often as a previous
one due to the geometric distribution. This results in a structure as exemplarily
depicted in Figure 3.1.

Just like for singly-linked lists, the first pointer always links to the directly ad-
jacent element. The second pointer connects all nodes that received a level of 2 or
higher. This goes on for the third pointer, the fourth pointer, etc.

Such a probabilistic approach generates a data structure with lookup properties
comparable to binary trees. It only involves a cheap random function to achieve this
instead of enforcing complex and expensive rebalancing operations.

Lookups are implemented by starting from the head node and checking the next
node on the highest used level. The code then passes all nodes on this level coming
before the node it is looking for. When a final node on one level is reached, the code
goes down a level and continues there. These steps are repeated until the first level
and the desired node is reached. The advantageous distribution of levels across the
Skip List leads to an average complexity of 𝒪(log 𝑛) for lookups.

Insertions and removals in Skip Lists always need to perform a lookup first. How-
ever, the remaining operations are doable in 𝒪(1), so the final complexity for both
operations is 𝒪(log 𝑛) too.

29

3 Implementation

L4
L3
L2
L1

Head 5 7 10 15 16 19 23

Figure 3.1: Example of a Skip List with four pointers for each node

For ReactOS Printing components, the Skip List has been implemented in a way
that it does not copy the element data. Instead, it only saves a pointer to the data
inside a node. This prevents overhead and keeps previous pointer references to the
element intact.

The simple structure of Skip Lists also allows for three extensions not found in
known implementations:

• Reduction of comparisons
A lookup operation in any data structure requires multiple comparisons to be
performed. To allow for every possible sorting order, the comparison is usually
implemented by calling a previously specified Compare routine. As calling a
function can be an expensive operation, an extension was proposed in 1990 to
reduce the number of required comparisons. This is done by remembering the
last compared element and never comparing the same element twice during
the lookup [30]. The extension has been implemented into the Skip List for
the Printing components.

• Fast lookup of element indexes
A concept for looking up an element by index in a Skip List has also been
proposed in [30]. It works by introducing an array, which keeps information
about the distance to each other node. An exemplary Skip List with distance
information is depicted in Figure 3.2.
Maintaining these distance arrays requires slightly more algorithm complexity
in the insertion and deletion functions. On the plus side, lookups can now re-
turn the element index as well while still keeping the same 𝒪(log 𝑛) complexity
on average. Such a lookup algorithm is given in Algorithm 1.

• Insertion of elements at the end of the list
A common task in Printing is adding a new Print Job with default prior-
ity. Such jobs are always inserted at the end of the Job List. Nevertheless,
the standard insertion function would perform multiple expensive calls to the
Compare routine to reach the Skip List tail.
Therefore, an optimized function called InsertTailElementSkiplist has been
introduced for the ReactOS Skip List implementation. This function simply
takes the shortest route to reach the end of the Skip List without the overhead
of calling the Compare routine.

30

3.7 Designing The Data Structures

L4
L3
L2
L1

Head 5 7 10 15 16 19 23

3

3

2

1 1

1

1

1

1

1

3

1 1 1

Figure 3.2: Example of a Skip List maintaining distance information between nodes

With these extensions, the Skip List performs very well for common tasks of the
Printing Stack. The average complexity of every single Skip List operation never
exceeds 𝒪(log 𝑛). For ReactOS, a Skip List has been implemented with 16 pointers
per element for managing Printers and Print Jobs. This number of pointers keeps
the average algorithm performance for up to 216 = 65536 elements. A small test
suite has been added to guarantee stability and reliability of the abstract data type
implementation.

3.7.2 Fast Random Number Generator
As noted beforehand, the implementation of a Skip List depends on a Generator
returning geometrically distributed random numbers for 𝑝 = 0.5. In fact, the Gen-
erator needs to output an integer between 1 and the array size. It does not need to
produce cryptographically secure random numbers though. Even more, the numbers
may be fully predictable, because only their distribution is relevant for the Skip List
concept to work.

With these given requirements, it was decided to integrate a custom Random
Number Generator into the Skip List code instead of depending on an operating
system function. Designing a custom Random Number Generator would go far be-
yond the scope of this thesis. To make a simple Generator available for nonspecial-
ists, Stephen Park and Keith Miller proposed a variant of the Linear Congruential
Generator (LCG) in 1988, which is now known as the Minimal Standard Random
Number Generator [34].

The Skip List’s _GetRandomLevel function makes use of this Random Number
Generator using the revised parameters 𝑎 = 48271 and 𝑛 = 2147483647 [35]. As the
returned numbers may be completely predictable, a fixed seed of 1 was defined in
the code.

In the beginning, it outputs 31 uniformly distributed random bits. A bitshift to
the right is then performed to shift out some bits and only leave one bit for every
possible level (as configured through the array size). This method limits the possible
Skip List node array size to 31 pointers. Anyway, such a size would be enough to
account for up to 231 elements while still having a data structure that keeps the
average algorithm complexity. For the Printing Stack, a Skip List with 16 possible
levels is used, so half of the random bits are shifted out.

31

3 Implementation

Algorithm 1 Looking up an element and its 1-based index in a Skip List
1: procedure LookupElementSkiplist(𝑆𝑘𝑖𝑝𝑙𝑖𝑠𝑡, 𝐸𝑙𝑒𝑚𝑒𝑛𝑡)
2: 𝐼𝑛𝑑𝑒𝑥← 1
3: 𝑁𝑜𝑑𝑒← 𝑆𝑘𝑖𝑝𝑙𝑖𝑠𝑡.𝐻𝑒𝑎𝑑

4: for 𝑖 = 𝑆𝑘𝑖𝑝𝑙𝑖𝑠𝑡.𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝐿𝑒𝑣𝑒𝑙→ 1 do
5: while 𝑁𝑜𝑑𝑒.𝑁𝑒𝑥𝑡[𝑖].𝐸𝑙𝑒𝑚𝑒𝑛𝑡 < 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 do
6: 𝐼𝑛𝑑𝑒𝑥← 𝐼𝑛𝑑𝑒𝑥 + 𝑁𝑜𝑑𝑒.𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑖]
7: 𝑁𝑜𝑑𝑒← 𝑁𝑜𝑑𝑒.𝑁𝑒𝑥𝑡[𝑖]
8: end while
9: end for

10: 𝑁𝑜𝑑𝑒← 𝑁𝑜𝑑𝑒.𝑁𝑒𝑥𝑡[0]
11: if 𝑁𝑜𝑑𝑒.𝐸𝑙𝑒𝑚𝑒𝑛𝑡 ̸= 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 then
12: return ∅
13: end if

14: return (𝑁𝑜𝑑𝑒.𝐸𝑙𝑒𝑚𝑒𝑛𝑡, 𝐼𝑛𝑑𝑒𝑥)
15: end procedure

Finally, the uniform distribution is turned into a geometric distribution for 𝑝 = 0.5
by using the Bit Scan Forward processor instruction. This instruction counts the
bits set to one from the least-significant bit to the most-significant bit and returns
the position of the first zero. Hence, a zero in the first bit has a probability of
0.51 = 0.5, a zero in the first two bits has a probability of 0.52 = 0.25, a zero in the
first three bits has a probability of 0.53 = 0.125, and so on. As a result, this method
delivers a geometric distribution for 𝑝 = 0.5 efficiently.

The full _GetRandomLevel listing can be found in Appendix A.1. The function is
simple enough to be declared as an inline function.

32

4 Evaluation
In this chapter, the developed components are evaluated through specific individual
tests. These tests do not only cover the actual components making up the Printing
Stack, but also verify the correctness of the Skip List implementation.

4.1 Verifying The Random Number Generator
In Section 3.7.2, a fast Random Number Generator has been developed that is
designed to return geometrically distributed numbers denoting Skip List levels. The
probability parameter of this Generator is defined as 𝑝 = 0.5. Achieving a sufficiently
geometric distribution of Skip List levels is crucial for the Skip List performance.
The average complexity of the algorithms involved cannot be reached if the Skip
List levels follow a different distribution.

To verify the distribution of levels returned by the Random Number Generator,
a test application has been written. It calls the Random Number Generator a
predefined number of times to simulate the distribution of levels for a Skip List with
the same element count. Logarithmic plots of the results of simulations with 1000
and 65536 elements are provided in Figure 4.1.

In both cases, the results show an approximate geometric distribution for the
lower levels with some outliers for higher levels. As the number of elements is sig-
nificantly lower on higher levels, these outliers are negligible. Generally spoken, the
more elements are added to a Skip List, the more their assigned levels converge
to a geometric distribution. In total, this test shows that the implemented Ran-
dom Number Generator is feasible to get the desired distribution for the Skip List
algorithms.

4.2 Testing The Skip List Implementation
As the Skip List is an integral component of the developed Printing Stack, its algo-
rithms received additional unit testing. In particular, the Skip List for the Printing
Stack includes distance arrays for each element to allow a fast lookup of element
indexes. This requires the insertion and deletion functions to update both pointers
and distances with every operation.

To test all implemented Skip List functions, another test program has been writ-
ten. It utilizes a Skip List that manages plain integer numbers and sorts them in
ascending order. The test first adds 40 random numbers to the list. In a next step,

33

4 Evaluation

0 5 10 15
20

23

26

29

Level

El
em

en
t

C
ou

nt

1000 Elements

0 5 10 15
20

25

210

215

Level

65536 Elements

Figure 4.1: Distribution of 1000 and 65536 elements across the levels of a 16-level
Skip List using the Minimal Standard Random Number Generator

all numbers in the range 0 to 29 are deleted again. Finally, another batch of 40
random numbers is added to the Skip List. Two lookup operations are performed
afterwards, one by index and one by looking for a specific integer. In the end, the
structure of the final Skip List is drawn on the screen. The drawing process makes
use of both the pointer and distance information. An exemplary output of the test
program is depicted in Figure 4.2.

By calling these individual functions in this specific order, all aspects of the Skip
List are tested. Typical bugs in abstract data type implementations can be caught,
like corrupted structures after an operation, off-by-one mistakes in loops, or similar.
The final dump of the resulting structure allows a visual check of the entire Skip
List. In case of a bad link to a next element or a wrongly calculated distance, an
element would appear misaligned.

Figure 4.2: Exemplary output of the Skip List test program

34

4.3 Testing The ReactOS Printing Stack In A Virtual Machine

4.3 Testing The ReactOS Printing Stack In A Virtual
Machine

After individual tests of crucial components, the developed Printing Stack as a
whole needed to be tested. This has been accomplished by building an ISO 9660
image file for the entire ReactOS Operating System, including the newly developed
Printing Stack components and the winspool_print test program. The ReactOS
Build System provides the target bootcd for this purpose. Calling this CMake target
builds all operating system components and finally creates an ISO 9660 image file.
Instead of using the default GCC compiler, the operating system has been built using
Microsoft Visual C++. This creates the necessary PDB files to enable source-level
debugging with WinDbg.

As neither Printer Drivers nor Printer Setup functions exist at this stage of the
Printing Stack, Printers cannot be installed through the operating system yet. With-
out an installed Printer, the Printing Stack cannot be tested though. To circumvent
this problem, the ReactOS installation data has been modified to always set up
a dummy Printer connected to the first Parallel Port. Without a corresponding
Printer Driver, this dummy Printer is still able to forward RAW data to the con-
nected real Printer. As no other datatype nor datatype conversions are supported
by now, such a dummy Printer is sufficient for all testing scenarios.

To catch outstanding code bugs early, it has been decided to use a Virtual Machine
for testing. This allows to develop and test on the same computer as well as mounting
the created ISO 9660 image file in a virtual CD drive instead of burning it to a
blank CD. While many different Virtualization products exist today, only some
were suitable for evaluating the Printing Stack. This is due to the fact that the
Printing Stack outputs data over a Parallel Port. For this purpose, the free VMware
Player software turned out to be a viable solution, because it offers a virtual Parallel
Port, whose output can be redirected into a file. The returned data can then be
examined to validate the correctness of the Printing Stack.

VMware Player has also been configured to emulate a virtual Serial Port and
redirect this one to a bidirectional pipe. The WinDbg debugger can then connect to
this pipe and act like it was debugging ReactOS on a computer connected through
a physical Serial Cable.

By the use of VMware and WinDbg, several bugs have been caught and fixed
in a relatively short time. Using a Virtual Machine instead of Real Hardware for
these tests has also simplified the deployment of fixes: System components could be
exchanged by turning off the Virtual Machine, mounting its virtual Hard Disk on
the Host Computer and rebooting ReactOS.

At the end of the testing and fixing phase, the Printing components have finally
become robust enough for the winspool_print tool. The set of implemented API calls
can be used reliably to send RAW Printing data to the Parallel Port. Examination
of the redirected Parallel Port output has revealed that a Printer would receive
properly formatted data.

35

http://www.vmware.com/products/player
http://www.vmware.com/products/player

4 Evaluation

4.4 Running The ReactOS Printing Stack On Real
Hardware

The final evaluation of the developed Printing Stack happened on a real computer
connected to a physical Printer. For this test, a Lenovo ThinkPad X61 with Dock-
ing Station has been chosen. This machine’s hardware components are known to
be supported by ReactOS out of the box without relying on third-party hardware
drivers. The Docking Station offers Parallel and Serial Ports not provided by the
laptop itself.

Preferably, a Dot-Matrix Printer would have been connected to the Parallel Port
of this laptop. Such Printers work character-wise, meaning that they do not await
a full page in a Control Language, but output every transmitted character as soon
as it arrives. Due to the unavailability of a Dot-Matrix Printer at the time of
testing, a Hewlett-Packard DeskJet 710C Inkjet Printer has been chosen instead.
This particular Printer expects all incoming data in Hewlett-Packard’s proprietary
Printing Performance Architecture (PPA) Control Language. The PPA Language
is implemented into the included Windows Device Driver, but otherwise largely
undocumented. However, Windows Printer Drivers are not usable in ReactOS before
the GDI part of the Printing Stack has been implemented. Therefore, another
solution was necessary to prepare data in PPA Language.

This solution has been found in the PNM2PPA tool. PNM2PPA is a program
that converts an input image in Portable Pixmap raster format into appropriate PPA
data for supported Hewlett-Packard Printers [28]. It is usually used in conjunction
with the GhostScript software, which converts documents in PostScript language
into raster formats. Together both applications build a filter chain for CUPS users
to let them print on PPA Printers.

As a result of this, a single page document was prepared on a different computer.
This document was first converted into PostScript, then processed into a raster
image using GhostScript until PNM2PPA finally produced data in PPA format.
The created PPA file was then transferred to the laptop running ReactOS. Finally,
the winspool_print tool read the PPA file and transmitted correctly formatted data
to the DeskJet Printer using API functions of the Printing Stack. The Printer
reacted accordingly and printed out the previuosly prepared document.

This final step of testing has shown that the implemented features of the Printing
Stack can properly communicate with Printers.

36

5 Conclusion
This thesis presents a Printing Stack for the ReactOS Operating System, which offers
compatibility with Windows Printing API functions and extensibility for future
additions.

Through extensive research in advance, the official Microsoft documentation for
the Windows Printing Stack has been complemented by additional information. An
overview of the components involved and their mutual dependencies has been given.

Based on the gathered information, a compatible replacement has been developed
for each fundamental component. By the consequent usage of various verification
methods during the development process, reliable code and compatibility to Win-
dows Server 2003 is guaranteed. Implementing communication between applications
and the Printing Stack consistently over RPC paves the way for a future integration
of ReactOS-based Print Servers into a networked environment.

The Skip List abstract data type has been introduced to address the need for a
flexible list structure inside Printing Stack components. Its implemented extensions
provide performance enhancements when handling large sets of elements.

Final testing of the Printing Stack inside a Virtual Machine and on Real Hardware
has demonstrated the functioning of the developed framework.

Within the scope of this bachelor’s thesis, only the foundations of the Print-
ing Stack could be implemented. The next logical task would be adding support
for native Windows Printer Drivers, which convert EMF data into Printer Control
Language. Along with this task comes the implementation of fundamental GDI
functions for Printing, e.g. StartDoc and EndDoc.

In order to provide an intuitive and satisfying user experience, the ReactOS Print-
ing Stack also requires several user interface components to be developed, which
guide the user through the installation, configuration, and management of available
Printers.

Finally, a modern operating system needs to provide support for a wide variety
of Printers out of the box. Due to the vast number of different Printers available,
the development focus should lie on Generic Drivers implementing common Printer
Control Languages. One example of this is Adobe PostScript.

To put it in a nutshell, Printing is an integral feature of modern desktop operating
systems. Providing a suitable Printing Stack for the ReactOS Project enriches the
user experience and improves compatibility with many popular applications. All in
all, this step makes more usage scenarios imaginable for the Open-Source Windows-
compatible operating system.

37

Appendix

A Listings
This appendix provides the actual C code for some implemented functions discussed
in Chapter 3.

A.1 _GetRandomLevel function
The _GetRandomLevel function has been introduced in Section 3.7.2. It implements
the Random Number Generator required for determining the level of a new element
added to a Skip List.

// Define SKIPLIST_LEVELS to the maximum number of levels
the Skip List shall have.

define SKIPLIST_LEVELS 16

C_ASSERT (SKIPLIST_LEVELS >= 1);
C_ASSERT (SKIPLIST_LEVELS <= 31);

static __inline CHAR
_GetRandomLevel ()
{

// Using a simple fixed seed and the Park - Miller Lehmer
Minimal Standard Random Number Generator gives an
acceptable distribution for our " random " levels .

static DWORD dwRandom = 1;

DWORD dwLevel = 0;
DWORD dwShifted ;

// Generate 31 uniformly distributed pseudo - random bits
using the Park - Miller Lehmer Minimal Standard Random
Number Generator .

dwRandom = (DWORD)(((ULONGLONG) dwRandom * 48271 UL) %
2147483647 UL);

// Shift out (31 - SKIPLIST_LEVELS) bits to the right to
have no more than SKIPLIST_LEVELS bits set.

dwShifted = dwRandom >> (31 - SKIPLIST_LEVELS);

// BitScanForward doesn ’t operate on a zero input value.

41

A Listings

if (dwShifted)
{

// BitScanForward sets dwLevel to the zero -based
position of the first set bit (from LSB to MSB).

// This makes dwLevel a geometrically distributed
value between 0 and SKIPLIST_LEVELS - 1 for p =
0.5.

BitScanForward (& dwLevel , dwShifted);
}

// dwLevel can ’t have a value higher than 30 this way ,
so a CHAR is more than enough .

return (CHAR) dwLevel ;
}

A.2 _RpcWritePrinter implementation
_RpcWritePrinter is one of the RPC server functions implemented in the Spooler
Server. It serves as an example how most of the RPC calls are implemented. Basi-
cally, Impersonation is performed, the corresponding Spooler Router function called,
and finally the security context reverted back to the system context. This process
is further illustrated in Figure 2.2.

DWORD
_RpcWritePrinter (WINSPOOL_PRINTER_HANDLE hPrinter , BYTE*

pBuf , DWORD cbBuf , DWORD* pcWritten)
{

DWORD dwErrorCode ;

dwErrorCode = RpcImpersonateClient (NULL);
if (dwErrorCode != ERROR_SUCCESS)
{

ERR(" RpcImpersonateClient failed with error %lu!\n",
dwErrorCode);

return dwErrorCode ;
}

WritePrinter (hPrinter , pBuf , cbBuf , pcWritten);
dwErrorCode = GetLastError ();

RpcRevertToSelf ();
return dwErrorCode ;

}

42

Bibliography
[1] Adobe Systems Incorporated. Adobe Acrobat X Pro * Set Adobe PDF Prop-

erties (Windows). 2015. url: http://help.adobe.com/en_US/acrobat/X/
pro/using/WS58a04a822e3e50102bd615109794195ff-7f2a.w.html.

[2] Android Open Source Project. Android KitKat | Android Developers. 2015.
url: http://developer.android.com/about/versions/kitkat.html.

[3] Deborah Black. Microsoft and DCE. 1993. url: ftp://ftp.microsoft.com/
developr/win32dk/sdk-docs/rpc/DCESIG.PPT.

[4] Vernon Brooks. IBM PC BIOS source code reconstruction. 2015. url: https:
//sites.google.com/site/pcdosretro/ibmpcbios.

[5] Ross Burton. gnome-cups-manager - display and edit CUPS printers. 2003.
url: http://manpages.ubuntu.com/manpages/hardy/man1/gnome-cups-
manager.1.html.

[6] Tom Callaway. The long, sordid tale of Sun RPC, abbreviated somewhat, to
protect the guily and the irresponsible. 2010. url: http://spot.livejournal.
com/315383.html.

[7] Easy Software Products. CUPS Licensed for Use in Apple Operating Systems!
2002. url: https://web.archive.org/web/20020810173413/http://www.
cups.org/news.php?V68.

[8] Free Software Foundation. strings - GNU Binary Utilities. 2015. url: https:
//sourceware.org/binutils/docs/binutils/strings.html.

[9] Dave Gardner. WINE (WINdows Emulator) Frequently Asked Questions. 1998.
url: http://www.faqs.org/faqs/windows-emulation/wine-faq/.

[10] Ziliang Guo. ReactOS Newsletter 54. 2009. url: https://reactos.org/
newsletter-54.

[11] Alex Ionescu. The Reactos Project - An Open Source OS Platform for Learn-
ing. 2007. url: http : / / mirror . csclub . uwaterloo . ca / csclub / alex -
ionescu.pdf.

[12] Ward Rosenberry John Shirley. Microsoft RPC programming guide. O’Reilly
& Associates, Inc., 1995. isbn: 1565920708.

[13] Achim Kolacki. Windows Software Training. Springer Fachmedien Wiesbaden,
1987. isbn: 9783528045586.

[14] Laurens Leurs. The history of PostScript. 2013. url: http://www.prepressure.
com/postscript/basics/history.

43

http://help.adobe.com/en_US/acrobat/X/pro/using/WS58a04a822e3e50102bd615109794195ff-7f2a.w.html
http://help.adobe.com/en_US/acrobat/X/pro/using/WS58a04a822e3e50102bd615109794195ff-7f2a.w.html
http://developer.android.com/about/versions/kitkat.html
ftp://ftp.microsoft.com/developr/win32dk/sdk-docs/rpc/DCESIG.PPT
ftp://ftp.microsoft.com/developr/win32dk/sdk-docs/rpc/DCESIG.PPT
https://sites.google.com/site/pcdosretro/ibmpcbios
https://sites.google.com/site/pcdosretro/ibmpcbios
http://manpages.ubuntu.com/manpages/hardy/man1/gnome-cups-manager.1.html
http://manpages.ubuntu.com/manpages/hardy/man1/gnome-cups-manager.1.html
http://spot.livejournal.com/315383.html
http://spot.livejournal.com/315383.html
https://web.archive.org/web/20020810173413/http://www.cups.org/news.php?V68
https://web.archive.org/web/20020810173413/http://www.cups.org/news.php?V68
https://sourceware.org/binutils/docs/binutils/strings.html
https://sourceware.org/binutils/docs/binutils/strings.html
http://www.faqs.org/faqs/windows-emulation/wine-faq/
https://reactos.org/newsletter-54
https://reactos.org/newsletter-54
http://mirror.csclub.uwaterloo.ca/csclub/alex-ionescu.pdf
http://mirror.csclub.uwaterloo.ca/csclub/alex-ionescu.pdf
http://www.prepressure.com/postscript/basics/history
http://www.prepressure.com/postscript/basics/history

Bibliography

[15] Jean-Baptiste Marchand. Windows network services internals. 2006. url: http:
//www.hsc.fr/ressources/articles/win_net_srv/index.html.

[16] Microsoft Corporation. [MS-RPCE]: Remote Procedure Call Protocol Exten-
sions. 2015. url: http://download.microsoft.com/download/9/5/E/
95EF66AF-9026-4BB0-A41D-A4F81802D92C/%5BMS-RPCE%5D.pdf.

[17] Microsoft Corporation. [MS-RPRN]: Print System Remote Protocol. 2014.
url: http : / / download . microsoft . com / download / 9 / 5 / E / 95EF66AF -
9026-4BB0-A41D-A4F81802D92C/%5BMS-RPRN%5D.pdf.

[18] Microsoft Developer Network. Client-Side Rendering. 2015. url: https://
msdn.microsoft.com/en-us/library/windows/hardware/ff545962%28v=
vs.85%29.aspx.

[19] Microsoft Developer Network. CreateRemoteThread function (Windows). 2015.
url: https://msdn.microsoft.com/en-us/library/windows/desktop/
ms682437%28v=vs.85%29.aspx.

[20] Microsoft Developer Network. Language Monitors (Windows Drivers). 2015.
url: https://msdn.microsoft.com/en-us/library/windows/hardware/
ff556450%28v=vs.85%29.aspx.

[21] Microsoft Developer Network. OpenPrinter function (Windows). 2015. url:
https : / / msdn . microsoft . com / en - us / library / windows / desktop /
dd162751%28v=vs.85%29.aspx.

[22] Microsoft Developer Network. Selecting a Protocol Sequence. 2015. url: https:
//msdn.microsoft.com/en-us/library/windows/desktop/aa378665%28v=
vs.85%29.aspx.

[23] Microsoft Developer Network. SetLastError function (Windows). 2015. url:
https : / / msdn . microsoft . com / en - us / library / windows / desktop /
ms680627%28v=vs.85%29.aspx.

[24] Microsoft TechNet. Impersonation. 2015. url: https://technet.microsoft.
com/en-us/library/cc961980.aspx.

[25] Open Systems Resources. The NT Insider: Kernel Mode Basics: Splay Trees.
2008. url: https://www.osronline.com/article.cfm?article=516.

[26] Kurt Pfeifle. Dissecting The CUPS Filtering System: A Network Postscript
RIP For non-PS Printers. 2002. url: http : / / www . openprinting . org /
download/kpfeifle/LinuxKongress2002/Tutorial/V.CUPS-Filtering-
Architecture/V.CUPS-Workshop-LinuxKongress2002-Content.html.

[27] Kurt Pfeifle. KDEPrint. 2001. url: http://www.linux- community.de/
Internal/Artikel/Print-Artikel/LinuxUser/2001/10/KDEPrint.

[28] PNM2PPA Team. PNM2PPA GhostScript Print Filter. 2015. url: http://
pnm2ppa.sourceforge.net/.

44

http://www.hsc.fr/ressources/articles/win_net_srv/index.html
http://www.hsc.fr/ressources/articles/win_net_srv/index.html
http://download.microsoft.com/download/9/5/E/95EF66AF-9026-4BB0-A41D-A4F81802D92C/%5BMS-RPCE%5D.pdf
http://download.microsoft.com/download/9/5/E/95EF66AF-9026-4BB0-A41D-A4F81802D92C/%5BMS-RPCE%5D.pdf
http://download.microsoft.com/download/9/5/E/95EF66AF-9026-4BB0-A41D-A4F81802D92C/%5BMS-RPRN%5D.pdf
http://download.microsoft.com/download/9/5/E/95EF66AF-9026-4BB0-A41D-A4F81802D92C/%5BMS-RPRN%5D.pdf
https://msdn.microsoft.com/en-us/library/windows/hardware/ff545962%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff545962%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff545962%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682437%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682437%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff556450%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff556450%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd162751%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd162751%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa378665%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa378665%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa378665%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680627%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680627%28v=vs.85%29.aspx
https://technet.microsoft.com/en-us/library/cc961980.aspx
https://technet.microsoft.com/en-us/library/cc961980.aspx
https://www.osronline.com/article.cfm?article=516
http://www.openprinting.org/download/kpfeifle/LinuxKongress2002/Tutorial/V.CUPS-Filtering-Architecture/V.CUPS-Workshop-LinuxKongress2002-Content.html
http://www.openprinting.org/download/kpfeifle/LinuxKongress2002/Tutorial/V.CUPS-Filtering-Architecture/V.CUPS-Workshop-LinuxKongress2002-Content.html
http://www.openprinting.org/download/kpfeifle/LinuxKongress2002/Tutorial/V.CUPS-Filtering-Architecture/V.CUPS-Workshop-LinuxKongress2002-Content.html
http://www.linux-community.de/Internal/Artikel/Print-Artikel/LinuxUser/2001/10/KDEPrint
http://www.linux-community.de/Internal/Artikel/Print-Artikel/LinuxUser/2001/10/KDEPrint
http://pnm2ppa.sourceforge.net/
http://pnm2ppa.sourceforge.net/

Bibliography

[29] Patrick A Powell. LPRng Reference Manual (For LPRng-3.8.35). 2010. url:
http://www.lprng.com/LPRng-Reference/LPRng-Reference.html.

[30] William Pugh. A Skip List Cookbook. Tech. rep. Institute for Advanced Com-
puter Studies, Department of Computer Science, University of Maryland, 1990.

[31] William Pugh. Skip Lists: A Probabilistic Alternative to Balanced Trees. Tech.
rep. Institute for Advanced Computer Studies, Department of Computer Sci-
ence, University of Maryland, 1990.

[32] ReactOS Team. ReactOS - New Informations. 1998. url: https : / / web .
archive.org/web/19981203081542/http://www.sid-dis.com/reactos/
new.htm.

[33] Mario Sixtus. ReactOS: Das Nicht-Windows. 2004. url: http://www.spiegel.
de/netzwelt/tech/reactos-das-nicht-windows-a-287199.html.

[34] Keith W. Miller Stephen K. Park. “Random number generators: good ones are
hard to find”. In: Communications of the ACM 31.10 (Oct. 1988), pp. 1192–
1201. url: http://www.firstpr.com.au/dsp/rand31/p1192-park.pdf.

[35] Paul K. Stockmeyer Stephen K. Park Keith W. Miller. “Remarks on Choosing
and Implementing Random Number Generators”. In: Communications of the
ACM 36.7 (July 1993), pp. 105–110. url: http://www.firstpr.com.au/
dsp/rand31/p105-crawford.pdf.

[36] Michael Sweet. Linux Today - A Bright New Future for Printing on Linux.
1999. url: http://www.linuxtoday.com/developer/1999060901410NWSM.

[37] Feng Yuan. Windows Graphics Programming: Win32 GDI and DirectDraw.
Prentice Hall PTR, 2001. isbn: 978-0130869852.

45

http://www.lprng.com/LPRng-Reference/LPRng-Reference.html
https://web.archive.org/web/19981203081542/http://www.sid-dis.com/reactos/new.htm
https://web.archive.org/web/19981203081542/http://www.sid-dis.com/reactos/new.htm
https://web.archive.org/web/19981203081542/http://www.sid-dis.com/reactos/new.htm
http://www.spiegel.de/netzwelt/tech/reactos-das-nicht-windows-a-287199.html
http://www.spiegel.de/netzwelt/tech/reactos-das-nicht-windows-a-287199.html
http://www.firstpr.com.au/dsp/rand31/p1192-park.pdf
http://www.firstpr.com.au/dsp/rand31/p105-crawford.pdf
http://www.firstpr.com.au/dsp/rand31/p105-crawford.pdf
http://www.linuxtoday.com/developer/1999060901410NWSM

	Title Page
	Abstract
	Table of Contents
	Abbreviations
	List of Figures
	Introduction
	Thesis Work
	Special Thanks

	Basics
	The ReactOS Project
	The WINE Project
	Printing Support In Operating Systems
	Microsoft Windows Printing Stack
	Common UNIX Printing System (CUPS)
	Comparison Of Both Systems

	Remote Procedure Call
	Reverse Engineering Tools
	Dependency Walker
	GNU strings
	Rohitab Batra's API Monitor
	WinDbg

	Implementation
	Examination Of Available Code
	Defining The Interfaces
	Choosing A Programming Language
	Developing The Required Components
	Integrating The Components Into The ReactOS Build System
	Verification During Development
	Designing The Data Structures
	Skip Lists
	Fast Random Number Generator

	Evaluation
	Verifying The Random Number Generator
	Testing The Skip List Implementation
	Testing The ReactOS Printing Stack In A Virtual Machine
	Running The ReactOS Printing Stack On Real Hardware

	Conclusion
	Listings
	_GetRandomLevel function
	_RpcWritePrinter implementation

	Bibliography

